Complexity Analysis

Complexity

□ Space

■ The amount of memory space needed to run the program.

☐ Time

■ The amount of computational time needed to run the program

We use insertion sort as an example Pick an instance characteristic ... nn = a.length (the number of elements to be sorted)

2

Space Complexity for Insertion Sort

```
for (int i = 1; i < a.length; i++)
                                                  Fixed part:
                                                   independent of n
{// insert a[i] into a[0:i-1]
                                                   ex: instruction space
  int t = a[i];
                                                   Variables: i, j,,t
                                                  Variable part:
  int j;
                                                    size dependent on n
                                                    ex: a[]
  for (j = i - 1; j >= 0 \&\& t < a[j];
                                                  Space requirement=
   j--)
                                                  Fixed + Variable
      a[j + 1] = a[j];
                                                  Focus on variable part:
  a[i + 1] = t;
                                                  a[] \rightarrow n
```

Time Complexity

□ Count a particular operation

☐ Count number of steps

□ Asymptotic complexity

Comparison Count

```
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
  int t = a[i];
  int j;
  for (j = i - 1; j >= 0 && t < a[j]; j--)
    a[j + 1] = a[j];
  a[j + 1] = t;
}</pre>
```

•Determine the number of comparison count as a function of n

Comparison Count

for
$$(j = i - 1; j >= 0 \&\& t < a[j]; j--)$$

 $a[j + 1] = a[j];$

How many comparisons are made? Number of compares depends on a[], t and i

6

Comparison Count

- ☐ Worst-case count = maximum count
- ☐ Best-case count = minimum count
- □ Average count

Worst-Case Comparison Count

for
$$(j = i - 1; j >= 0 \&\& t < a[j]; j--)$$

 $a[j + 1] = a[j];$

$$a = [1, 2, 3, 4]$$
 and $t = 0 \Rightarrow 4$ compares $a = [1,2,3,...,n]$ and $t = 0 \Rightarrow n$ compares

Worst-Case Comparison Count

for (int
$$i = 1$$
; $i < n$; $i++$)
for ($j = i - 1$; $j >= 0 && t < a[j]$; $j--$)
 $a[j + 1] = a[j]$;

total compares =
$$1 + 2 + 3 + ... + (n-1)$$

= $(n-1)n/2$

In Class Exercise: Best Case Comparison Count

for (int
$$i = 1$$
; $i < n$; $i++$)
for ($j = i - 1$; $j >= 0 && t < a[j]$; $j--$)
 $a[j + 1] = a[j]$;

- \Box a = [1, 2, 3, 4] and t = 5 => 1 compares
- \Box a = [1,2,3,...,n] and t = n+1 =>1 compares
- ☐ Compute the total number of comparison

9

Step Count

A step is an amount of computing that does not depend on the instance characteristic n

10 adds, 100 subtracts, 1000 multiplies can all be counted as a single step

n adds cannot be counted as 1 step

Step per execution (s/e)

	s/e
for (int $i = 1$; $i < a$.length; $i++$)	1
{// insert a[i] into a[0:i-1]	0
int t = a[i];	1
int j;	0
for $(j = i - 1; j >= 0 \&\& t < a[j]; j)$	1
a[j + 1] = a[j];	1
a[j + 1] = t;	1
}	0
•	

10

Step per execution

s/e isn't always 0 or 1

```
x = sum(a, n);
```

where n is the instance characteristic and

sum adds a[0:n-1] has a s/e count of n (a[0]+a[1]+a[2]+...+a[n-1])

Step Count

14

Step Count

```
for (int i = 1; i < a.length; i++)
{ 2i + 3}

step count for
    for (int i = 1; i < a.length; i++)
is n

step count for body of for loop is
2(1+2+3+...+n-1) + 3(n-1)
= (n-1)n + 3(n-1)
= (n-1)(n+3)
```

```
s/e frequency total steps
                                           1 n
for (int i = 1; i < a.length; i++)
                                           0 n-1
{ // insert a[i] into a[0:i-1]
 int t = a[i];
                                           1 n-1
                                                           n-1
                                           0 n-1
 int j;
 for (j = i - 1; j >= 0 \&\& t < a[j]; j--)
                                           1 (n-1)(n+2)/2
                                           1 n(n-1)/2
     a[i + 1] = a[i];
                                           1 n-1
 a[i + 1] = t;
                                                           n-1
                                           0 n-1
```

Total : n^2+3n-3

15

13

In Class Exercise:

Determine the **frequency counts** for all statements in the following program segment

for(i=1; i<=n; i++)
for(j=1; j<=i; j++)
for(k=1; k<=j; k++)

$$x++;$$

Asymptotic Complexity of Insertion Sort

$$\square$$
 (n-1)(n+3) \rightarrow **O(n**²)

☐ What does this mean?

17

18

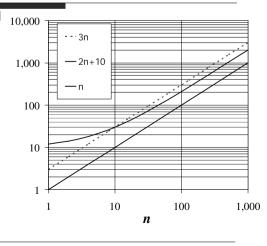
Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and c such that

 $f(n) \leq cg(n) \ \text{for} \ n \geq n_0$

- \square Example: 2n + 10 is O(n)

 - **■** $(c-2) n \ge 10$
 - **■** $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$



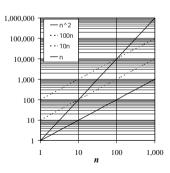
Big-Oh Example

Example: the function n^2 is not O(n)

$$-n^2 \le cn$$

$$-n \leq c$$

the above inequality cannot be satisfied since c must be a constant



Big-Oh and Growth Rate

- ☐ The big-Oh notation gives an upper bound on the growth rate of a function
- \square The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- ☐ We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

21

Complexity of Insertion Sort

- □ Time or number of operations does not exceed c.n² on any input of size n (n suitably large).
- \square Actually, the worst-case time is $\Theta(\mathbf{n^2})$ and the best-case is $\Theta(\mathbf{n})$
- ☐ So, the worst-case time is expected to quadruple each time **n** is doubled

The definition of Θ (n) will be discussed finally.

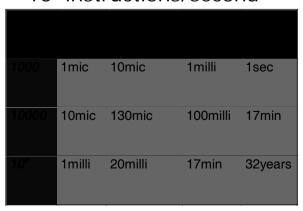
Complexity of Insertion Sort

 \square Is $O(n^2)$ too much time?

☐ Is the algorithm practical?

Practical Complexities

109 instructions/second



Impractical Complexities

109 instructions/second

n	n ⁴	n ¹⁰	2 ⁿ
1000	17min	3.2 x 10 ¹³ years	3.2 x 10 ²⁸³ years
10000	116 days	???	???
10 ⁶	3 x 10 ⁷ years	??????	??????

Faster Computer v.s Better algorithm

Algorithmic improvement more useful than hardware improvement.

E.g. 2^n to n^3

Relatives of Big-Oh

25

big-Omega

- f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$
- □ big-Theta
 - f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$ for $n \ge n_0$
- □ little-oh
 - **■** f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$
- ☐ little-omega
 - f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

- Big-Oh
 - f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)
- □ big-Omega
 - f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)
- □ big-Theta
 - f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)
- □ little-oh
 - f(n) is o(g(n)) if f(n) is asymptotically **strictly less** than g(n)
- □ little-omega
 - f(n) is $\omega(g(n))$ if f(n) is asymptotically **strictly greater** than g(n)

Example

```
f(n) = 2n^{2} + n + 4
g(n) = n^{2}
f(n) = \theta(g(n))
------
c' = 1, c'' = 7
1*g(n) <= f(n) <= 7*g(n), for n >= 1
1*1^{2} <= 2*1^{2} + 1 + 4 <= 7*1^{2}
```

Example $f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$ $f(n) = O(n^m)$

$$f(n) = a_{m} n^{m} + a_{m-1} n^{m-1} + \dots + a_{1} n + a_{0}$$

$$= \sum_{i=0}^{m} a_{i} n^{i}$$

$$\leq \sum_{i=0}^{m} |a_{i}| n^{i}$$

$$\leq n^{m} \cdot \sum_{i=0}^{m} |a_{i}| n^{i-m}$$

$$\leq n^{m} \cdot \sum_{i=0}^{m} |a_{i}|$$

29

Homework

Determine the frequency counts for all statements and analysis the complexity for the program segment

```
for(int i=0;i<n;i++)
    { // n is number of elements stored in array
    for (int j=0;j<n-i;j++)
        {
        if(array[j]>array[j+1])
            Swap(array[j],array[j+1]);
        }
}
```

30