
Complexity Analysis

1 2

Complexity

Space
The amount of memory space needed to run the
program.

Time
The amount of computational time needed to
run the program

We use insertion sort as an example
Pick an instance characteristic … n
n = a.length (the number of elements to be sorted)

3

Space Complexity for Insertion Sort

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

int t = a[i];
int j;
for (j = i - 1; j >= 0 && t < a[j];
j--)

a[j + 1] = a[j];
a[j + 1] = t;

}

Fixed part:
independent of n

ex: instruction space
Variables: i, j,,t

Variable part:
size dependent on n
ex: a[]

Space requirement=
Fixed + Variable

Focus on variable part:
a[] n

4

Time Complexity

Count a particular operation
Count number of steps
Asymptotic complexity

5

Comparison Count

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

int t = a[i];
int j;
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];
a[j + 1] = t;

}

Determine the number of comparison count as a function of n

6

Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];

How many comparisons are made?
Number of compares depends on
a[], t and i

7

Comparison Count

Worst-case count = maximum count
Best-case count = minimum count
Average count

8

Worst-Case Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 0 => 4 compares
a = [1,2,3,…,n] and t = 0 => n compares

9

Worst-Case Comparison Count

for (int i = 1; i < n; i++)
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

total compares = 1 + 2 + 3 + … + (n-1)

= (n-1)n/2

10

In Class Exercise:
Best Case Comparison Count

for (int i = 1; i < n; i++)
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 5 => 1 compares
a = [1,2,3,…,n] and t = n+1 =>1 compares
Compute the total number of comparison

11

Step Count

A step is an amount of computing that
does not depend on the instance
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step

n adds cannot be counted as 1 step

12

Step per execution (s/e)

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1] 0

int t = a[i]; 1
int j; 0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1

a[j + 1] = a[j]; 1
a[j + 1] = t; 1

} 0

s/e

13

Step per execution

s/e isn’t always 0 or 1

x = sum(a, n);

where n is the instance characteristic
and
sum adds a[0:n-1] has a s/e count of n

(a[0]+a[1]+a[2]+…+a[n-1])

14

Step Count
s/e steps

i
i+ 1

Worst case analysis

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1] 0

int t = a[i]; 1
int j; 0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1

a[j + 1] = a[j]; 1
a[j + 1] = t; 1

} 0

15

Step Count

for (int i = 1; i < a.length; i++)
{ 2i + 3}

step count for
for (int i = 1; i < a.length; i++)

is n

step count for body of for loop is
2(1+2+3+…+n-1) + 3(n-1)
= (n-1)n + 3(n-1)
= (n-1)(n+3)

16

for (int i = 1; i < a.length; i++) 1 n n

{ // insert a[i] into a[0:i-1] 0 n-1 0

int t = a[i]; 1 n-1 n-1

int j; 0 n-1 0

for (j = i - 1; j >= 0 && t < a[j];j--) 1 (n-1)(n+2)/2

a[j + 1] = a[j]; 1 n(n-1)/2

a[j + 1] = t; 1 n-1 n-1

} 0 n-1 0

Total：n^2+3n-3

s/e frequency total steps

17

In Class Exercise:
Determine the frequency counts for all statements in
the following program segment

for(i=1;i<=n;i++)
for(j=1;j<=i;j++)

for(k=1;k<=j;k++)
x++;

18

Asymptotic Complexity of
Insertion Sort

(n-1)(n+3) O(n2)
What does this mean?

19

Big-Oh Notation

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

Example: 2n + 10 is O(n)
2n + 10 ≤ cn

(c − 2) n ≥ 10

n ≥ 10/(c − 2)

Pick c = 3 and n0 = 10

20

Big-Oh Example

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

constant a bemust since

satisfied becannot inequality above the

)(not isfunction the:Example
2

2

c

cn

cnn

nOn

≤−
≤−

21

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

Complexity of Insertion Sort

Time or number of operations does
not exceed c.n2 on any input of size
n (n suitably large).
Actually, the worst-case time is Θ(n2)
and the best-case is Θ(n)
So, the worst-case time is expected
to quadruple each time n is doubled

The definition of Θ (n) will be discussed finally.

Complexity of Insertion Sort

Is O(n2) too much time?
Is the algorithm practical?

24

Practical Complexities
109 instructions/second

n n nlogn n2 n3

1000 1mic 10mic 1milli 1sec

10000 10mic 130mic 100milli 17min

106 1milli 20milli 17min 32years

25

Impractical Complexities
109 instructions/second

n n4 n10 2n

1000 17min 3.2 x 1013
years

3.2 x 10283
years

10000

116
days

 ??? ???

106 3 x 107
years

?????? ??????

Faster Computer v.s Better algorithm

Algorithmic improvement more useful
than hardware improvement.

E.g. 2n to n3

27

Relatives of Big-Oh

big-Omega
f(n) is Ω(g(n)) if there is a constant c > 0
and an integer constant n0 ≥ 1 such that
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0
and an integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤
c’’•g(n) for n ≥ n0

little-oh
f(n) is o(g(n)) if, for any constant c > 0, there is an
integer constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

little-omega
f(n) is ω(g(n)) if, for any constant c > 0, there is an
integer constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0

28

Intuition for Asymptotic
Notation

Big-Oh
f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
f(n) is ω(g(n)) if f(n) is asymptotically strictly greater than g(n)

29

Example

222

2

2

1*7411*21*1

1),(*7)()(1

7",1'

))(()(

)(

42)(

<=++<=
>=<=<=∗

==
−−−−−−−−−−−−−

=
=

++=

nforngnfng

cc

ngnf

nng

nnnf

θ

30

)()(

)(01
1

1

m

m
m

m
m

nOnf

ananananf

=

++++= −
− L

∑

∑

∑

∑

=

−

=

=

=

−
−

⋅≤

⋅≤

≤

=

+++=

m

i
i

m

mi
m

i
i

m

i
m

i
i

m

i

i
i

m
m

m
m

an

nan

na

na

ananananf

0

0

0

0

01
1

1)(L

Example

31

Homework
Determine the frequency counts for all statements and
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // n is number of elements stored in array
for (int j=0;j<n-i;j++)

{
if(array[j]>array[j+1])
Swap(array[j],array[j+1]);

}
}

