Complexity Analysis

Complexity

O Space

B The amount of memory space needed to run the
program.
O Time

B The amount of computational time needed to
run the program

We use insertion sort as an example
Pick an instance characteristic ... n

n = a.length (the number of elements to be sorted)

Space Complexity for Insertion Sort

for (inti = 1; i < a.length; i++)

Fixed part:
H 1 i -3 independent of n
{// insert a[i] into a[O:i-1] ex: mstruction epace
i = il- Variables: i, j,,t
!nt t alil; Variable part:
Int J; size dependent on n
. . . . ex: af]
for(j=i-1;j>=08&&t < a[j];
j__) Space requirement=
; . Fixed + Variable
a[j + 1] = a[jl;
R Focus on variable part:
ai +1] =t;

af[> n

}

Time Complexity

O Count a particular operation
O Count number of steps
O Asymptotic complexity




Comparison Count

for (inti = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
int t = a[i];
int j;
for(j=1-1;]>=0&&t<a[j]; J--)
ali + 1] = a[il;
a[j + 1] =t;
b

+Determine the number of comparison count as a function of n

Comparison Count

forg=i-1;)j>=0&&t<aljl; j--)
alj + 1] = alil;

How many comparisons are made?
Number of compares depends on
a[], tand i

Comparison Count

O Worst-case count = maximum count
O Best-case count = minimum count
[0 Average count

Worst-Case Comparison Count

for(=i-1;)j>=0&&t<aljl; j--)
apj + 1] = a[jl;

a=1[1,2,3,4]and t =0 =>4 compares
a=1[1,2,3,...,n]and t = 0 => n compares




Worst-Case Comparison Count

for (inti=1;i<n;i++)
for(=i-1;)j>=0&&t<aljl; j--)
alj + 1] = alil;

total compares=1+2+3 + ... + (n-1)
= (n-1)n/2

In Class Exercise:
Best Case Comparison Count

for (inti=1;i<n; i++)
forg=i-1;j>=0&&t<aljl; j--)
apj + 1] = ali];

O a=1[1, 2, 3,4]and t =5 => 1 compares
O a=11,2,3,...,n] and t = n+1 =>1 compares
O Compute the total number of comparison
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Step Count

A step is an amount of computing that
does not depend on the instance
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step

n adds cannot be counted as 1 step
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Step per execution (s/e)
s/e

for (inti=1;i< a.length; i++) 1
{// insert a[i] into a[0:i-1] 0
intt=ali]; 1
int j; 0
for(j=i-1;j>=0&&t<alj; j-) 1
afj + 1] = afj]; 1

alj + 1] =t; 1

} 0
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Step per execution

s/e isn’t always O or 1
X = sum(a, n);

where n is the instance characteristic

and

sum adds a[0:n-1] has a s/e count of n
(a[0]+a[1]+a[2]+...+a[n-1])
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Step Count

s/e Steps
for (inti=1;i< a.length; i++) 1
{/[ insert a[i] into a[0:i-1] 0
intt = ali]; 1
int j; 0
for (j=i-1;j>=0&&t < afj]; j--) 1 i+ 1
afj + 1] = a[j]; 1T
afj + 1] =t; 1
} 0

Worst case analysis

14

Step Count

for (inti = 1; i < a.length; i++)
{ 2i + 3}

step count for
for (inti = 1; i < a.length; i++)
isn

step count for body of for loop is
2(1+2+3+...+n-1) + 3(n-1)

= (n-1)n + 3(n-1)

= (n-1)(n+3)
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s/e frequency total steps

\

R

for (inti = 1; i < a.length; i++)

{ // insert a[i] into a[0:i-1]
int t = al[i];
int j;
for(g=1i-1;j>=0&&t<aljl;j--)
afj + 1] = a[jl;
afj +11 =t
¥

Total : nA"2+3n-3

1
0
1
0
1
1
1
0

A
|

n n
n-1 0
n-1 n-1
n-1 0
(n-1)(n+2)/2
n(n-1)/2

n-1 n-1
n-1 0
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In Class Exercise:
Determine the frequency counts for all statements in
the following program segment

for(i=1;i<=n;i++)

for(j=1;j<=i;j++)
for(k=1;k<=j;k++)

X++
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Asymptotic Complexity of
Insertion Sort

O (n-1)(n+3)>0(n?2)
O What does this mean?
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Big-Oh Notation

O Given functions f(n) and (390
g(n), we say that f(n) is
O(g(n)) if there are
positive constants 1,000
¢ and n, such that

f(n) < cg(n) for n=n, 100
O Example: 2n + 10 is O(n)

B 2n+10<cn 10

B (c-2)n=10

B n2>10/(c-2) |

B Pick c=3and n,=10

--3n

—2n+10

\\
3
.
.
.

1 10

100
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1,000

Big-Oh Example

1,000,000 &
Example : the function n’is not O(n) ;
100,000 5

2
—n"<cn

10,000 4

—n<c =
L0 e
the above inequality cannot be satisfied 00 = é. - é ‘

since ¢ must be a constant
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Big-Oh and Growth Rate

O The big-Oh notation gives an upper bound on the
growth rate of a function

O The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

O We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))
g(n) grows more Yes No
Jf(n) grows more No Yes
Same growth Yes Yes
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Complexity of Insertion Sort

O Time or number of operations does
not exceed ¢.n? on any input of size
n (n suitably large).

O Actually, the worst-case time is ©(n?)
and the best-case is ©(n)

O So, the worst-case time is expected
to quadruple each time n is doubled

The definition of © (n) will be discussed finally.

Complexity of Insertion Sort

O Is O(n2) too much time?
O Is the algorithm practical?

Practical Complexities

10° instructions/second
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Impractical Complexities

109 instructions/second
n n® n" N

17min  3.2x10 3.2x10
years years

777 27?7

2?7?7?7?7? 2?7?77
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Faster Computer v.s Better algorithm

" e

Algorithmic improvement more useful
than hardware improvement.

E.g. 2" to n3

Relatives of Big-Oh

O big-Omega
m f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that
f(n) = ceg(n) for n = n,
O big-Theta
m f(n) is ©(g(n)) if there are constants ¢’ >0and ¢’ >0
and an integer constant n, = 1 such that c’»g(n) < f(n) <
c’eg(n) for n =2 n,
O little-oh
m  f(n) is o(g(n)) if, for any constant ¢ > 0, there is an
integer constant n, = O such that f(n) < ceg(n) for n = n,
O little-omega
m f(n) is w(g(n)) if, for any constant ¢ > 0, there is an
integer constant ny > 0 such that f(n) > ceg(n) for n 2 ng
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Intuition for Asymptotic
Notation

Big-Oh
m  f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
m f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
m  f(n) is ©(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
m  f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
m f(n) is w(g(n)) if f(n) is asymptotically strictly greater than g(n)
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Example

f(n)=2n"+n+4

gn)y=n’
f(n)=0(g(n))

c'=1c"=7
1 g(n)<= f(n)<=T*g(n), forn>=1
%17 <=2*%12 +1+4 <=7*1?
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1

Example i
f(n)=0(0n")

f(n)y=a,n" +a, n" +-

+an+a,

m—1

n=an"+a,  n" +---an+a
m m-1 1 0
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Homework

Determine the frequency counts for all statements and
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // nis number of elements stored in array
for (int j=0;j<n-i;j++)
{
if(array[j]=array[j+1])
Swap(array[j],array[j+1]);
by

31




