Complexity Analysis

Complexity

O Space

B The amount of memory space needed to run the
program.
O Time

B The amount of computational time needed to
run the program

We use insertion sort as an example
Pick an instance characteristic ... n

n = a.length (the number of elements to be sorted)

Space Complexity for Insertion Sort

for (inti = 1; i < a.length; i++)

Fixed part:
H 1 i -3 independent of n
{// insert a[i] into a[O:i-1] ex: mstruction epace
i = il- Variables: i, j,,t
!nt t alil; Variable part:
Int J; size dependent on n
. . . . ex: af]
for(j=i-1;j>=08&&t < a[j];
j__) Space requirement=
; . Fixed + Variable
a[j + 1] = a[jl;
R Focus on variable part:
ai +1] =t;

af[> n

}

Time Complexity

O Count a particular operation
O Count number of steps
O Asymptotic complexity

Comparison Count

for (inti = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
int t = a[i];
int j;
for(j=1-1;]>=0&&t<a[j]; J--)
ali + 1] = a[il;
a[j + 1] =t;
b

+Determine the number of comparison count as a function of n

Comparison Count

forg=i-1;)j>=0&&t<aljl; j--)
alj + 1] = alil;

How many comparisons are made?
Number of compares depends on
a[], tand i

Comparison Count

O Worst-case count = maximum count
O Best-case count = minimum count
[0 Average count

Worst-Case Comparison Count

for(=i-1;)j>=0&&t<aljl; j--)
apj + 1] = a[jl;

a=1[1,2,3,4]and t =0 =>4 compares
a=1[1,2,3,...,n]and t = 0 => n compares

Worst-Case Comparison Count

for (inti=1;i<n;i++)
for(=i-1;)j>=0&&t<aljl; j--)
alj + 1] = alil;

total compares=1+2+3 + ... + (n-1)
= (n-1)n/2

In Class Exercise:
Best Case Comparison Count

for (inti=1;i<n; i++)
forg=i-1;j>=0&&t<aljl; j--)
apj + 1] = ali];

O a=1[1, 2, 3,4]and t =5 => 1 compares
O a=11,2,3,...,n] and t = n+1 =>1 compares
O Compute the total number of comparison

10

Step Count

A step is an amount of computing that
does not depend on the instance
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step

n adds cannot be counted as 1 step

11

Step per execution (s/e)
s/e

for (inti=1;i< a.length; i++) 1
{// insert a[i] into a[0:i-1] 0
intt=ali]; 1
int j; 0
for(j=i-1;j>=0&&t<alj; j-) 1
afj + 1] = afj]; 1

alj + 1] =t; 1

} 0

12

Step per execution

s/e isn’t always O or 1
X = sum(a, n);

where n is the instance characteristic

and

sum adds a[0:n-1] has a s/e count of n
(a[0]+a[1]+a[2]+...+a[n-1])

13

Step Count

s/e Steps
for (inti=1;i< a.length; i++) 1
{/[insert a[i] into a[0:i-1] 0
intt = ali]; 1
int j; 0
for (j=i-1;j>=0&&t < afj]; j--) 1 i+ 1
afj + 1] = a[j]; 1T
afj + 1] =t; 1
} 0

Worst case analysis

14

Step Count

for (inti = 1; i < a.length; i++)
{ 2i + 3}

step count for
for (inti = 1; i < a.length; i++)
isn

step count for body of for loop is
2(1+2+3+...+n-1) + 3(n-1)

= (n-1)n + 3(n-1)

= (n-1)(n+3)

15

s/e frequency total steps

\

R

for (inti = 1; i < a.length; i++)

{ // insert a[i] into a[0:i-1]
int t = al[i];
int j;
for(g=1i-1;j>=0&&t<aljl;j--)
afj + 1] = a[jl;
afj +11 =t
¥

Total : nA"2+3n-3

1
0
1
0
1
1
1
0

A
|

n n
n-1 0
n-1 n-1
n-1 0
(n-1)(n+2)/2
n(n-1)/2

n-1 n-1
n-1 0

16

In Class Exercise:
Determine the frequency counts for all statements in
the following program segment

for(i=1;i<=n;i++)

for(j=1;j<=i;j++)
for(k=1;k<=j;k++)

X++

17

Asymptotic Complexity of
Insertion Sort

O (n-1)(n+3)>0(n?2)
O What does this mean?

18

Big-Oh Notation

O Given functions f(n) and (390
g(n), we say that f(n) is
O(g(n)) if there are
positive constants 1,000
¢ and n, such that

f(n) < cg(n) for n=n, 100
O Example: 2n + 10 is O(n)

B 2n+10<cn 10

B (c-2)n=10

B n2>10/(c-2) |

B Pick c=3and n,=10

--3n

—2n+10

\\
3
.
.
.

1 10

100

19

1,000

Big-Oh Example

1,000,000 &
Example : the function n’is not O(n) ;
100,000 5

2
—n"<cn

10,000 4

—n<c =
L0 e
the above inequality cannot be satisfied 00 = é. - é ‘

since ¢ must be a constant

20

Big-Oh and Growth Rate

O The big-Oh notation gives an upper bound on the
growth rate of a function

O The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

O We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))
g(n) grows more Yes No
Jf(n) grows more No Yes
Same growth Yes Yes

21

Complexity of Insertion Sort

O Time or number of operations does
not exceed ¢.n? on any input of size
n (n suitably large).

O Actually, the worst-case time is ©(n?)
and the best-case is ©(n)

O So, the worst-case time is expected
to quadruple each time n is doubled

The definition of © (n) will be discussed finally.

Complexity of Insertion Sort

O Is O(n2) too much time?
O Is the algorithm practical?

Practical Complexities

10° instructions/second

24

Impractical Complexities

109 instructions/second
n n® n" N

17min 3.2x10 3.2x10
years years

777 27?7

2?7?7?7?7? 2?7?77

25

Faster Computer v.s Better algorithm

" e

Algorithmic improvement more useful
than hardware improvement.

E.g. 2" to n3

Relatives of Big-Oh

O big-Omega
m f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that
f(n) = ceg(n) for n = n,
O big-Theta
m f(n) is ©(g(n)) if there are constants ¢’ >0and ¢’ >0
and an integer constant n, = 1 such that c’»g(n) < f(n) <
c’eg(n) for n =2 n,
O little-oh
m f(n) is o(g(n)) if, for any constant ¢ > 0, there is an
integer constant n, = O such that f(n) < ceg(n) for n = n,
O little-omega
m f(n) is w(g(n)) if, for any constant ¢ > 0, there is an
integer constant ny > 0 such that f(n) > ceg(n) for n 2 ng

27

Intuition for Asymptotic
Notation

Big-Oh
m f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
m f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
m f(n) is ©(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
m f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
m f(n) is w(g(n)) if f(n) is asymptotically strictly greater than g(n)

28

Example

f(n)=2n"+n+4

gn)y=n’
f(n)=0(g(n))

c'=1c"=7
1 g(n)<= f(n)<=T*g(n), forn>=1
%17 <=2*%12 +1+4 <=7*1?

29

1

Example i
f(n)=0(0n")

f(n)y=a,n" +a, n" +-

+an+a,

m—1

n=an"+a, n" +---an+a
m m-1 1 0

30

Homework

Determine the frequency counts for all statements and
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // nis number of elements stored in array
for (int j=0;j<n-i;j++)
{
if(array[j]=array[j+1])
Swap(array[j],array[j+1]);
by

31

