
Complexity Analysis

1 2

Complexity 

Space
The amount of memory space needed to run the 
program.

Time
The amount of computational time needed to 
run the program

We use insertion sort as an example 
Pick an instance characteristic … n
n = a.length (the number of elements to be sorted)
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Space Complexity for Insertion Sort

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

int t = a[i];
int j;
for (j = i - 1; j >= 0 && t < a[j]; 
j--)

a[j + 1] = a[j];
a[j + 1] = t;

}

Fixed part:
independent of n

ex:  instruction space
Variables: i, j,,t

Variable part: 
size dependent on n
ex: a[]

Space requirement=
Fixed + Variable

Focus on variable part:
a[] n
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Time Complexity

Count a particular operation
Count number of steps
Asymptotic complexity
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Comparison Count

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

int t = a[i];
int j;
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];
a[j + 1] = t;

}

Determine the number of comparison count as a function of n
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Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];

How many comparisons are made?
Number of compares depends on 
a[], t and i
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Comparison Count

Worst-case count = maximum count
Best-case count = minimum count
Average count
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Worst-Case Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 0 => 4 compares
a = [1,2,3,…,n] and t = 0 => n compares
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Worst-Case Comparison Count

for (int i = 1; i < n; i++)
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

total compares = 1 + 2 + 3 + … + (n-1)

= (n-1)n/2
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In Class Exercise:
Best Case Comparison Count 

for (int i = 1; i < n; i++)
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 5 => 1 compares
a = [1,2,3,…,n] and t = n+1 =>1 compares
Compute the total number of comparison
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Step Count

A step is an amount of computing that 
does not depend on the instance 
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step 

n adds cannot be counted as 1 step
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Step per execution (s/e)

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1]                             0

int t = a[i];                                                1
int j;                                                       0
for (j = i - 1; j >= 0 && t < a[j]; j--)            1

a[j + 1] = a[j];                                       1
a[j + 1] = t;                                               1

}                                                               0

s/e
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Step per execution

s/e isn’t always 0 or 1

x = sum(a, n);

where n is the instance characteristic
and 
sum adds a[0:n-1] has a s/e count of n

(a[0]+a[1]+a[2]+…+a[n-1])
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Step Count
s/e steps

i
i+ 1

Worst case analysis

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1]                             0

int t = a[i];                                                1
int j;                                                       0
for (j = i - 1; j >= 0 && t < a[j]; j--)            1

a[j + 1] = a[j];                                       1
a[j + 1] = t;                                               1

}                                                               0
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Step Count

for (int i = 1; i < a.length; i++)      
{ 2i + 3}

step count for
for (int i = 1; i < a.length; i++)

is n

step count for body of for loop is
2(1+2+3+…+n-1) + 3(n-1)
= (n-1)n + 3(n-1)
= (n-1)(n+3)
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for (int i = 1; i < a.length; i++) 1 n n

{ // insert a[i] into a[0:i-1] 0 n-1 0

int t = a[i]; 1 n-1 n-1

int j; 0 n-1 0

for (j = i - 1; j >= 0 && t < a[j];j--)       1 (n-1)(n+2)/2

a[j + 1] = a[j]; 1 n(n-1)/2

a[j + 1] = t; 1 n-1 n-1

} 0 n-1 0

Total：n^2+3n-3

s/e frequency total steps
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In Class Exercise:
Determine the frequency counts for all statements in 
the following program segment

for(i=1;i<=n;i++)
for(j=1;j<=i;j++)

for(k=1;k<=j;k++)
x++;
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Asymptotic Complexity of 
Insertion Sort

(n-1)(n+3) O(n2)
What does this mean?
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Big-Oh Notation
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Given functions f(n) and 
g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0

Example: 2n + 10 is O(n)
2n + 10 ≤ cn

(c − 2) n ≥ 10

n ≥ 10/(c − 2)

Pick c = 3 and n0 = 10
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Big-Oh Example
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Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the 
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)

We can use the big-Oh notation to rank functions 
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

Complexity of Insertion Sort

Time or number of operations does 
not exceed c.n2 on any input of size 
n (n suitably large).
Actually, the worst-case time is Θ(n2) 
and the best-case is Θ(n)
So, the worst-case time is expected 
to quadruple each time n is doubled

The definition of Θ (n) will be discussed finally. 

Complexity of Insertion Sort

Is O(n2) too much time?
Is the algorithm practical?
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Practical Complexities
109 instructions/second

n n nlogn n2 n3 

1000 1mic 10mic 1milli 1sec 

10000 10mic 130mic 100milli 17min 

106 1milli 20milli 17min 32years 
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Impractical Complexities
109 instructions/second

n n4 n10 2n 

1000 17min 3.2 x 1013 
years 

3.2 x 10283 
years 

10000 
 
 

116 
days 

  ??? ??? 

106 3 x 107 
years 

?????? ?????? 

 

 

Faster Computer v.s Better algorithm

Algorithmic improvement more useful
than hardware improvement.

E.g. 2n to n3
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Relatives of Big-Oh

big-Omega
f(n) is Ω(g(n)) if there is a constant c > 0 
and an integer constant n0 ≥ 1 such that 
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 
and an integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤
c’’•g(n) for n ≥ n0

little-oh
f(n) is o(g(n)) if, for any constant c > 0, there is an 
integer constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

little-omega
f(n) is ω(g(n)) if, for any constant c > 0, there is an 
integer constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0
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Intuition for Asymptotic 
Notation

Big-Oh
f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
f(n) is ω(g(n)) if f(n) is asymptotically strictly greater than g(n)
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Example
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Homework
Determine the frequency counts for all statements and 
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // n is number of elements stored in array
for (int j=0;j<n-i;j++)

{
if(array[j]>array[j+1])
Swap(array[j],array[j+1]);

}
}


