- 1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true and briefly justify your answer. Otherwise, circle F and provide a counterexample or brief reasoning.
 - T F Binary search can locate a specified element, if it exists, in an arbitrary sequence.
 - T F If $ac \equiv bc \mod m$, where a, b, c, and m are integers with $m \ge 2$, then $a \equiv b \mod m$.
 - T F There are a countable infinite number of primes.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

- 2. [2] What's your favorite algorithm? Why?
- 3. [4] (§4.3 #31) The product of two integers is $2^5 \cdot 3^8 \cdot 5^3 \cdot 7^{11}$ and their greatest common divisor is $2 \cdot 3^7 \cdot 7^9$. What is their least common multiple? Show your work or your reasoning.

4. Consider the Sort algorithm described below for the next three questions.

```
Data: a_0, a_1, \dots a_{n-1}: integers where n > 2

Result: integers sorted in increasing order

for i = 0 to n - 1 do

smallSub=i;

for j = i to n - 1 do

if a_j < a_{smallSub} then

smallSub=j;

end

temp =a_i;

a_i = a_{smallSub};

a_{smallSub} =temp;

end

end
```

Algorithm 1: Sort Algorithm

(a) [4] (Quiz3 #4) List the steps used by the Sort algorithm on the input {7, 6, 8, 5}. Clearly indicate when and what swaps/recordings/interchanges are made.

(b) [2] Describe the Sort algorithm as you would to a colleague during lunch.

(c) [2] ($\S3.3 \#3$) Give a big-O estimate for the comparisons used in the sort algorithm. Show your reasoning.

5. Each of the following give an exact count of operations taken in a worse case senerio for a certain algorithm. Identify their complexity (big-O for programmers or big- Θ for computer scientists) as you would to a colleague and justify yourself.

(a) [2] (§3.2 #6)
$$\frac{x^3 + 2x}{2x + 1}$$

- (b) [2] (§3.2 #7b) $4x^3 + (\log x)^4$
- (c) [2] (§3.2 #19) $2^{x+1} + 8x^{15}$
- 6. [5] Choose *ONE* of the following and support your conclusions. Clearly identify which of the two you are answering and what work you want to be considered for credit.
 - (a) (§3.1 #23) Clearly describe an algorithm that determine whether a function from a finite set of integers to another finite set of integers is onto. Specifically the inputs are: f:function, $[x_0, x_1, ... x_n]$:integers in domain, $[y_0, y_1, ... y_m]$: integers in codomain.
 - (b) $(\S3.1 \# 32)$ Clearly describe and algorithm that finds all terms of a finite sequence of integers that are greater than the sum of all previous terms in sequence.

- 7. (a) [3] (§4.2 #21) Find $10011_2 + 10110_2$
 - (b) [2] (§4.2 #3) Convert the binary number 10110₂ into decimal.

(c) [3] (§4.2 #40) Recall the two's complement representation of an integer: To represent an integer x between $2^{n-1} \le x \le 2^{n-1}$ using n bits we use the leftmost bit to record the 'sign'. A 0 bit in this position is used for a positive integer and a 1 bit in this position is used for a negative integer. For a positive

integer, the remaining bits are identical to the binary expansion of the integer. For a negative integer, the remaining bits are the bits of the binary expansion of $2^{n-1} - |x|$.

Find the 6 bit two's complement to -21.

- (d) [2] ($\S4.2 \#3$) Consider the answer to (c) as only a binary number (as opposed to a two's complement representation). Convert the above binary number into decimal.
- (e) [3] (§4.1 #13) Find c such that $c + 21 \equiv 0 \mod 32$.
- (f) [ExtraCredit] Identify how the two's complement representation with 6 bits is related to arithmetic modulo 2^6 or \mathbb{Z}_{32} .

- 8. [6] Choose *ONE* of the following and support your conclusions. Clearly identify which of the two you are answering and what work you want to be considered for credit.
 - (a) (§4.1 #7) Prove if a, b, and c are positive integers where $a \neq 0$ and $c \neq 0$ such that (ac)|(bc) then a|b.
 - (b) (Lecture 11/5) Prove if a, b, and c are positive integers such that gcd(a, b) = 1 and a|(bc), then a|c.