Equivalence Relations

- 1. Let R be a relation on \mathbb{Z} defined by $\{(a, b) | a \neq b\}$
 - (a) Identify five ordered pairs in R.
 - (b) What is the reflective closure of R?
 - (c) What is the symmetric closure of R?
 - (d) What is the antisymmetric closure of R?
- 2. Let $T = \{(1,3), (1,4), (2,1), (3,2)\}$ be the relation on the set $\{1,2,3,4\}$.
 - (a) What is the reflexive closure of T?
 - (b) What is the symmetric closure of T?
 - (c) What is the transitive closure of T?

- 3. For each of the following determine if the relation defines an equivalence relation and if it does, identify the equivalence classes.
 - (a) Let R be the relation on the set of all triangles defined by $\{(\triangle abc, \triangle def) | \angle a = \angle d \text{ and } \angle b = \angle e\}$

(b) Let S be a relation on the set of all functions from \mathbb{Z} to \mathbb{Z} defined by $\{(f,g)|f(0) = g(0) \text{ and } f(1) = g(1)\}$.

(c) Let T be a relation on the set of all sets of real numbers which that ATB if and only if |A| = |B|.

(d) Let U be a relation on the set $\{a, b, c, d\}$ with the corresponding directed graph.

