NAME:
True/False: If the statement is always true, give a brief explanation of why it is. If the statement is false, give a counterexample.

1. [4] Given any matrices A, B, then $A+B$ is well defined.
2. [4] Given any matrices A, B, then $A * B=B * A$.
3. [4] The main diagonal of a skew-symmetric matrix must consist of entirely of zeros.
4. [4] Given any matrices A and B such that $A * B$ equals the zero matrix, then either A or B must be the zero matrix.
5. [4] Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & -1 & 1 \\ 0 & 1 & -1\end{array}\right]$. The vector $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is in $\operatorname{null}(\mathrm{A})$.
6. [4] The columns in a 3×3 matrix A, form a basis for $\operatorname{col}(A)$.

Free Response: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
7. Let a, b, and c be real, nonzero numbers and let A, B, and C be matrices defined by:

$$
A=\left[\begin{array}{ccc}
a & 0 & 0 \\
-1 & 0 & 1
\end{array}\right], B=\left[\begin{array}{ll}
0 & 1 \\
b & 0 \\
3 & 0
\end{array}\right], \text { and } C=\left[\begin{array}{cc}
c & 0 \\
2 & 1
\end{array}\right]
$$

Compute the following if possible.
(a) $[2] A^{\mathrm{T}}+B$
(b) $[4] C A$
(c) $[3] C^{3} B$
(d) $[3] C^{-1}$
8. [4] Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Find the conditions on a, b, c and d such that M commutes multiplicatively with the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
9. [4] Consider the set $S=\left\{[x, y, z] \in \mathbb{R}^{3} \mid z=2 x\right.$ and $\left.y=0\right\}$.

Prove S is a subspace of \mathbb{R}^{3} or give a counterexample to show that it does not.
10. Provide a lecture on induction. That is:
(a) [3] explain the logic used in an induction proof,
(b) [1] identify the essential elements in an induction proof, and
(c) [2] provide an example induction proof with the above essential elements.

