NAME:
True/False: If the statement is always true, give a brief explanation of why it is (not a "formal" proof!). If the statement is false, give a counterexample.

1. [4] If \vec{u}, \vec{v}, and \vec{w} are in \mathbb{R}^{n}, where $n \geq 2$, then $\vec{u} \cdot \vec{v}+\vec{w}$.
2. [4] The plane defined by $x+2 y+3 z=1$ is parallel to the line defined by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] t+\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$ where $t \in \mathbb{R}$.
3. [4] If \vec{u}, \vec{v}, and \vec{w} are in \mathbb{R}^{n}, where $n \geq 2$, then $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$.
4. [4] If a system of linear equations has more variables than equations, then the system has infinitely many solutions.
5. [4] The vectors \vec{u}, \vec{v}, and \vec{w} are in $\operatorname{span}(\vec{u}, \vec{v}, \vec{u}+\vec{w})$.
6. [4] The vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a linear combination of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1\end{array}\right]$

Free Response: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
7. (a) [1] Identify the point $P=(-2,4,1)$ on the axis provided.
(b) [1] Identify the vector $\vec{v}=\langle-2,4,1\rangle$.
(c) [2] Describe the difference between your answers for part (a) and (b).

(d) [2] Compute $\vec{v}+3 \vec{i}$.
(e) [2] Write down the equation of a line parallel to \vec{v} that passes through P.
8. [2] Create a system of linear equations that has only one solution.
9. [6] Let a and b be nonzero real numbers and consider the augmented matrix: $\left[\begin{array}{ccccc}3 & 6 & 0 & -3 & : 18 \\ 0 & 0 & b & -6 & : 3 \\ a & 0 & -b & 0 & : 6 a\end{array}\right]$

Use Gaussian Elimination, or Gauss-Jordan Elimination, or any series of elementary row operations that make sense to solve the system.
10. [2] Let a and b be nonzero real numbers and solve the following system of linear equations:

$$
\begin{gathered}
3 x+6 y-3 w=18 \\
b z-6 w=3 \\
a x-b z=6
\end{gathered}
$$

11. [3] Identify a topic that did not appear on this exam and then construct a question about/for this topic. (Yes, I'd like you to help me write your final exam!)
12. [5] Prove $\operatorname{proj}_{\vec{u}}\left(\operatorname{proj}_{\vec{u}}(\vec{v})\right)=\operatorname{proj}_{\vec{u}}(\vec{v})$ where \vec{u} and \vec{v} are in \mathbb{R}^{n}.
