True/False: If the statement is *always* true, give a brief explanation of why it is. If the statement is false, give a counterexample.

1. [4] Let \overrightarrow{u} and \overrightarrow{v} be vectors in \mathbb{R}^n , $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$.

2. [4] Let *l* be the line that passes through the point (1, -1, 1) and has a direction vector $\overrightarrow{d} = \begin{bmatrix} 2\\ 3\\ -1 \end{bmatrix}$. The line *l* is parallel to the plane defined by 2x + 3y - z = 1.

3. [4] Any line in \mathbb{R}^2 is a subspace.

4. [4] A set of vectors that are linearly independent in \mathbb{R}^3 also form a basis for \mathbb{R}^3 .

5. [4] For any matrices A and B, det(A + B) = det(A) + det(B).

6. [4] All linear transformations from \mathbb{R}^2 to \mathbb{R}^2 have a nonzero eigenvector.

Free Responce: Show your work for the following problems. The correct answer with no supporting work will receive NO credit. (If you use a calculator, be sure to tell me.)

7. [3] Find all solutions to the following system of linear equations: $\begin{cases} x_1 - 3x_2 - 2x_3 = 0\\ -x_1 + 2x_2 + x_3 = 0\\ 2x_1 + 4x_2 + 6x_3 = 0 \end{cases}$

8. [2] Let
$$M = \begin{bmatrix} 1 & -3 & -2 \\ -1 & 2 & 1 \\ 2 & 4 & 6 \end{bmatrix}$$
. Find a basis for Null(M).
Hint: consider using your work from the previous question.

9. [2] Let
$$A = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 \\ 2 \\ 4 \end{bmatrix}$, and $C = \begin{bmatrix} -2 \\ 1 \\ 6 \end{bmatrix}$. Determine if A , B , and C span \mathbb{R}^3 .
Justify your result. *Hint: consider using your work from the previous questions.*

10. Let
$$N = \begin{bmatrix} 0 & 0 & c \\ 0 & b & -c \\ a & a & 0 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 0 & a \\ 0 & f & a \end{bmatrix}$, and $Q = \begin{bmatrix} 1 & 0 \\ 0 & f \\ f & 0 \end{bmatrix}$, where a, b, c , and f are nonzero real numbers. Find the following if possible:
(a) $[1] P + Q^{T}$ (b) $[1] NP$

(a) [2] PQ (b) [3] N^{-1}

11. [4] Let \overrightarrow{v} be a vector in \mathbb{R}^n , prove $||\overrightarrow{v}|| = 0$ if and only if $\overrightarrow{v} = \overrightarrow{0}$.

- 12. Let k be a nonzero real number. Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\overrightarrow{v} = A\overrightarrow{v}$, where $A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$.
 - (a) [3] Describe geometrically the effect of the matrix transformation from \mathbb{R}^2 to \mathbb{R}^2 .

- (b) [1] What is the characteristic equation for A?
- (c) [2] Either use the above work or geometry to find the eigenvalues and an associated eigenvector for A.

- (d) [2] Find the matrix that would record the following series of linear transformations on \mathbb{R}^2 with matrix multiplication:
 - i. apply the linear transformation ${\cal T}$
 - ii. reflect over the *y*-axis.