True/False: If the statement is always true, give a brief explanation of why it is. If the statement is false, give a counterexample.

1. [4] Let \vec{u} and \vec{v} be vectors in $\mathbb{R}^{n}, \vec{u}+\vec{v}=\vec{v}+\vec{u}$.
2. [4] Let l be the line that passes through the point $(1,-1,1)$ and has a direction vector $\vec{d}=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$. The line l is parallel to the plane defined by $2 x+3 y-z=1$.
3. [4] Any line in \mathbb{R}^{2} is a subspace.
4. [4] A set of vectors that are linearly independent in \mathbb{R}^{3} also form a basis for \mathbb{R}^{3}.
5. [4] For any matrices A and $B \operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
6. [4] All linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2} have a nonzero eigenvector.

Free Responce: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
(If you use a calculator, be sure to tell me.)
7. [3] Find all solutions to the following system of linear equations: $\left\{\begin{array}{l}x_{1}-3 x_{2}-2 x_{3}=0 \\ -x_{1}+2 x_{2}+x_{3}=0 \\ 2 x_{1}+4 x_{2}+6 x_{3}=0\end{array}\right\}$
8. [2] Let $M=\left[\begin{array}{ccc}1 & -3 & -2 \\ -1 & 2 & 1 \\ 2 & 4 & 6\end{array}\right]$. Find a basis for $\operatorname{Null}(M)$.

Hint: consider using your work from the previous question.
9. [2] Let $A=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right], B=\left[\begin{array}{c}-3 \\ 2 \\ 4\end{array}\right]$, and $C=\left[\begin{array}{c}-2 \\ 1 \\ 6\end{array}\right]$. Determine if A, B, and C span \mathbb{R}^{3}. Justify your result. Hint: consider using your work from the previous questions.
10. Let $N=\left[\begin{array}{ccc}0 & 0 & c \\ 0 & b & -c \\ a & a & 0\end{array}\right], P=\left[\begin{array}{ccc}1 & 0 & a \\ 0 & f & a\end{array}\right]$, and $Q=\left[\begin{array}{ll}1 & 0 \\ 0 & f \\ f & 0\end{array}\right]$, where a, b, c, and f are nonzero real numbers. Find the following if possible:
(a) $[1] P+Q^{\mathrm{T}}$
(b) $[1] N P$
(a) $[2] P Q$
(b) $[3] N^{-1}$
11. [4] Let \vec{v} be a vector in \mathbb{R}^{n}, prove $\|\vec{v}\|=0$ if and only if $\vec{v}=\overrightarrow{0}$.
12. Let k be a nonzero real number. Consider the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T \vec{v}=A \vec{v}$, where $A=\left[\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right]$.
(a) [3] Describe geometrically the effect of the matrix transformation from \mathbb{R}^{2} to \mathbb{R}^{2}.
(b) [1] What is the characteristic equation for A ?
(c) [2] Either use the above work or geometry to find the eigenvalues and an associated eigenvector for A.
(d) [2] Find the matrix that would record the following series of linear transformations on \mathbb{R}^{2} with matrix multiplication:
i. apply the linear transformation T
ii. reflect over the y-axis.

