True/False: If the statement is always true, provide a proof of why it is. If the statement is false, give a counterexample.

1. [4] The angle between $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}\sqrt{3}-1 \\ \sqrt{3}+1\end{array}\right]$ is 60°.
2. [4] For every vector \vec{x} in \mathbb{R}^{n} and scalar $c,\|c \vec{x}\|=c\|\vec{x}\|$.
3. [4] If $A=\left[\begin{array}{llll}2 & -1 & 0 & 3 \\ 4 & -2 & 1 & 3\end{array}\right]$, then $\left[\begin{array}{llll}1 & 2 & 0 & 0\end{array}\right]^{\top}$ is in $\operatorname{Null}(A)$.
4. [4] If $V=\operatorname{Span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}\right)$, then $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}\right\}$ forms a basis of V.
5. [4] The vector $\vec{x}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{rrr}7 & 1 & -2 \\ -3 & 3 & 6 \\ 2 & 2 & 2\end{array}\right]$ with a corresponding eigenvalue of 6 .
6. [4] If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ then $A^{n}=\left[\begin{array}{ll}2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1}\end{array}\right]$ for all $n \geq 1$.

Free Response: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

1. Let \vec{v} and \vec{u} be vectors from \mathbb{R}^{2} depicted below.

(a) [2] Label the point in \mathbb{R}^{2} that corresponds to $\vec{u}-2 \vec{v}=\vec{z}$.
(b) [2] Let $U=\operatorname{Span}(\vec{u})$. Identify U on \mathbb{R}^{2} above.
(c) [3] Write the vector form of the equation of the line that passes through a and b. Do not approximate \vec{u} or \vec{v} but use them if needed in the expression.
(d) [2] Notice that \vec{u} and \vec{v} span \mathbb{R}^{2}. Write \vec{a} as a linear combination of \vec{u} and \vec{v}.
(e) [4] Is U a subspace? Justify your conclusion.
2. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a function that projects all the points in \mathbb{R}^{2} onto the line $t\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, where $t \in \mathbb{R}$.
(a) [4] Write down a matrix that acts on the point (x, y) in the same way that F does.
(b) [3] Is F invertible? If so, find F^{-1}. If not, explain why.
3. Let $A=\left[\begin{array}{rrr}-1 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & -1\end{array}\right]$
(a) [4] Find the characteristic polynomial of A.
(b) [7] Find all the eigenvalues and a basis for their corresponding eigenspaces for the matrix A.
