TQS 308

Fall 2010

NAME:

True/False: If the statement is *always* true, give a brief explanation of why it is. If the statement is false, give a counterexample.

1. [4] If A and B are both 2×2 matrices, then AB = BA

2. [4] A matrix of the form
$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
 where $a, b \in \mathbb{R}$ commutes with $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

3. [4] If A and B are both 2×2 matrices, then $(A + B)^{-1} = A^{-1} + B^{-1}$.

4. [4] A basis for the subspace:
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} + t \begin{bmatrix} 1\\2\\3 \end{bmatrix} + r \begin{bmatrix} 3\\6\\9 \end{bmatrix} | r, t \in \mathbb{R} \right\} \text{ in } \mathbb{R}^3 \text{ is: } \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\9 \end{bmatrix} \right\}$$

5. [4] A set of vectors that are linearly independent in \mathbb{R}^3 also form a basis for \mathbb{R}^3 .

6. [4] The transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ that embeds \mathbb{R}^2 into the *xy*-plane is given by

$$\overrightarrow{x} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \overrightarrow{x}.$$

Free Responce: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

7. Let A, B, and C be defined by:

$$A = \begin{bmatrix} -2 & 2 & 0 \\ 4 & -4 & 1 \end{bmatrix}, B = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix}, \text{ and } C = \begin{bmatrix} -2 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Compute the following if possible.

(a) [1] 2B (b) [2] A^{T}

(c) [2] a basis for
$$col(A)$$
 (d) [4] C^{-1}

- 8. Let A be a 2 × 3 matrix, B be a 3 × 1 matrix, and let C be a 3 × 3 matrix.
 (a) [1] What are the dimensions of the matrix BC, if it exists?
 - (b) [1] What are the dimensions of the matrix CA^{T} , if it exists?
 - (c) [1] What are the dimensions of the matrix $C^{8}B$, if it exists?

- 9. Assume all matrices A_i given below are multiplicatively invertible and of such a size that the multiplication makes sense.
 - (a) [2] What is the multiplicative inverse of A_2A_1 ?
 - (b) [4] Use induction to prove that $A_n..A_2A_1$ is invertible for all n.

10. Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\overrightarrow{v} = A\overrightarrow{v}$, where

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

(a) [1] The vector shown on the right is \overrightarrow{v} . Draw the image of \overrightarrow{v} under the transformation T.

					5,					
					y 4 ·					
					3.					
-	_				2.					
		_								
	v				1					
	v									
										\rightarrow
5	-4	4 -	3-	2 -	10	-	2	2 3	3 x ²	↓ {
5	-4	4 -	3 -	2 -	1 0 -1		2	2 3	3 x ²	
5	-2	4 -	3 -	2 -	1 0 -1		2	2 (8 x ²	
5	-2	4 -	3 -	2 -	1 0 -1 -2		2	2 3	3 x ²	1 {
5	-2	4 -	3 -	2 -	1 0 -1 -2		2	2 3	3 x ²	1 !
5		4 -	3 -	2 -	1 0 -1· -2· -3·			2 3	3 x ²	1 !
5		4 -	3 -	2 -	1 0 1 2 3			2 3	3 x ²	

(b) [3] Find a basis for null(A).

- (c) [2] Identify null(A) on the axes provided above.
- (d) [2] Find any \overrightarrow{x} that are *invariant* under the action of T. That is, find all \overrightarrow{x} such that $T\overrightarrow{x} = \overrightarrow{x}$. Justify your answer either geometrically or algebraically.