Quiz 3 Math 252

Name:

Ken Show all your work (algebraically or geometrically) for each and simplify. No credit is given without supporting work.

1. [2] Evaluate the following or explain why your theorems don't apply.

$$\int_0^{\frac{\pi}{4}} \sec^2 t \, dt$$

$$\tan t \int_0^{\frac{\pi}{4}} - \tan 0$$

$$= 1 - 0 \in \mathbb{N}$$

or the internal
$$[-3,1]$$

in fact the graph suggests
it should be a positive area.

Cx St(tant)=St(Sint(sint(sist)) * Sing + co 30 = 1 = > tent + 1 = 2620

but it you use \$\frac{1}{3}\];
you'dget a veg en sur.

2. [2] Find the following or explain why your theorems don't apply.

$$\int \frac{1}{x^2} dx = \int \frac{1}{x^2} dx$$

n't apply.

$$\int e^{5x} dx = \int e^{4x} dx$$

so Sexdx= & Serch

dissutable finans Hoszallik CK (\$ e5x +C) = e5x/

3. [2] If f(1) = 12, f' is continuous, and $\int_1^4 f'(x) dx = 17$, what is the value of f(4)?

Solution of the continuous, and
$$\int_{1}^{1} \int (x) dx = 17$$
, what is the value of $\int (4)$?

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous, and $\int_{1}^{1} \int (x) dx = 17$.

Solution of the continuous of the continu

- 4. A particle moves along a line so that its velocity as time t is $v(t) = t^2 t 6$ (measured in meters per second).
 - (a) [2] Set up but do not calculate the definite integral(s) used to find the net displacement of the particle during the time period $1 \le t \le 4$.

(b) [2] Set up but do not calculate the the definite integrals used to find the total distance traveled during the time period $1 \le t \le 4$.

