Spring 2009

NAME:

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

1. [4] Explain in your own words what the following mean.

(a)
$$\int_0^1 -x^2 dx = \frac{-1}{3}$$

(b) $\int_0^{\frac{\pi}{2}} |\sin x - \cos 2x| \, dx = \frac{3}{2}\sqrt{3} - 1$

2. [4] Carefully write down the First Fundamental Theorem of Calculus.

$$f(x) = \begin{cases} \arctan x & \text{if } -1 \le x \le 1, \\ \frac{\pi}{2}x - \frac{\pi}{4} & \text{if } 1 < x \end{cases}$$

- 3. Refer to the above definition of f(x) to answer the following questions.
 - (a) [2] Carefully graph f(x) on the set of axis provided.

		у	Î			
			0.75π			
			0.5π			
			0.25π			
-2	-1		0	1	2	x
			-0.25π			
			-0.5π			

(b) [3] Give a rough sketch of the graph of f'(x) on the set of axis provided.

		У		
				2 r
-2	-1	0	1	2 2

(c) [4] Give a rough sketch of the graph of $\int_{-1}^{x} f(t) dt$ on the set of axis provided.

	у			
-2	-1	0	1	2 X
_				-

4. [4] Given $\int_0^9 f(x) dx = 37$ and $\int_0^9 g(x) dx = 16$ find the following: (a) $\int_0^9 2f(x) + 3g(x) dx$

(b) $\int_0^3 x g(x^2) \, dx$

5. [7] Sketch the region enclosed by the curves $y = 12 - x^2$ and $y = x^2 - 6$ on the set of axis provided. Decide whether to integrate with respect to x or y. Then find the area of the region.

					A				1	
				У	12					
					9					
					6					_
					3					_
-5 -	-4	-3	-2	-1	0	1	2	3	4	→ x
					-3					
					-6					
					-9					-
					-12					_

6. [6 each] Evaluate ONLY TWO of the following. Indicate clearly which two you want graded by completely striking the problem you do not want graded.

(a)
$$\int \frac{(x-1)^3}{x^2} dx$$

(b)
$$\int \frac{\sec\theta\tan\theta}{1+\sec\theta} dx$$

(c)
$$\int \frac{z^2}{\sqrt[3]{1+z^3}} \, dx$$

- 7. [10] The velocity function (in meters per second) is given for a particle moving along a line by the function v(t) = 3t 5 for $0 \le t \le 3$.
 - (a) Find the net distance traveled by the particle in the given time.

(b) Find the total distance traveled by the particle in the given time.