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APPLIED PROJECT Where to Sit at the Movies

T
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f-9'—f——xcosa——]

[VP| =9 +zcosa, |PT| = 35 — (44 zsina) = 31 — zsina, and
|PB| = (4+zsina) — 10 = zsine — 6. So using the Pythagorean Theorem, we have

VT| = \/[VP[2 +|PT|? = \/(9 + zcos@)® + (31 — zsina)? = q, and

VB|=/|VPP +|PBJ = /(0 +zcos a)? + (zsina — 6)° = b. Using the Law of Cosines on AVBT,

6 = arccos( LY — 625 .
= 2ab » a8 Tequ

. From the graph of , it appears that the value of z which maximizes @ is z =~ 8.25 ft. Assuming that the first row

a? +b? — 625

get 252 = a® + b2 — 2abcosf < cosh = Sk

at z = 0, the row closest to this value of z is the fourth row, at z = 9 ft, and from the graph, the viewing angle in;
this row seems to be about 0.85 radians, or about 49°. .

1

0 : : 60
. With a CAS, we type in the definition of 6, substitute in the proper values of a and b in terms of  and
@ = 20° = F radians, and then use the differentiation command to find the derivative. We use a numerical root
finder and find that the root of the equation df/dz = 0 is = ~ 8.253062, as approximated in Problem 2.
. From the graph in Problem 2, it seems that the average value of the function on the interval [0, 60] is about 0.6.
can use a CAS to approximate = [ (z) dz ~ 0.625 ~ 36°. (The calculation is much faster if we reduce the

80 Jo
number of digits of accuracy required.) The minimum value is 6(60) ~ 0.38 and, from Problem 2, the maximum

value is about 0.85.

6 Review

CONCEPT CHECK
1. (a) See Section 6.1, Figure 2 and Equations 6.1.1 and 6.1.2.

(b) Instead of using “top minus bottom” and integrating from left to right, we use “right minus left” and integrate
from bottom to top. See Figures 11 and 12 in Section 6.1.

2. The numerical value of the area represents the number of meters by which Sue is ahead of Kathy after 1 minute.
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3, (a) See the discussion in Section 6.2, near Figures 2 and 3, ending in the Definition of Volume.

(b) See the discussion between Examples 5 and 6 in Section 6.2. If the cross-section is a disk, find the radius in
terms of z or y and use A= 7r(rad1us) If the cross-section is a washer find the inner radius rj, and outer

radius Tout anduse A = m (rout) - ﬂ(rﬁl)

4@V =2mrhAr= (circumference) (height) (thickness)

(b) For a typical shell, find the circumference and height in terms of z or i and calculate
V= f: (circumference) (height) (dz or dy), where a and b are the limits on « or .

e have (c) Sometimes slicing produces washers or disks whose radii are difficult (or impossible) to find explicitly. On other

occasions, the cylindrical shell method leads to an easier integral than slicing does.

_aw of Cosines on AV BT, we 5. fos f(z) da represents the amount of work done. Its units are newton-meters, or joules.

‘a2+b2_

625 . . b
2ab )’ as required, 6. (2) The average value of a function f on an interval [a, b] is fae = —b—i—a / f(z)dz.

. Assuming that the first row is (b) The Mean Value Theorem for Integrals says that there is a number ¢ at which the value of f is exactly equal to

the average value of the function, that is, f(c) = fave. For a geometric interpretation of the Mean Value Theorem
for Integrals, see Figure 2 in Section 6.5 and the discussion that accompanies it.

e graph, the viewing angle in

EXERCISES

10=2"-2-6=(2-3)(z+2) & x=30r—2 So

A=[%[0-(z* —z—6)]dz = [°, (—=? +z+6)dz
) in terms of z and [ % mz 4 6:1:] i ,
ve. We use a nuinerical root

mated in Problem 2. (-9+35+18) — (8 +2-12)

nterval [0, 60] is about 0.6. We | =12

much faster if we reduce the

om Problem 2, the maximum f 20-22 =2 -12 © 32-97 & P—16 o z—.id
So

A=f*, (20— %) - (s — 12)] dz = [*, (32 - 22%) da

=2 f: (32—-2z%)dz  [even function]

=2[32z ~ 22°]]
ight minus left” and integrate

=2(128 — 128) = 312

ead of Kathy after 1 minute.
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3 A= fol [(ez -1) - (xz —-:L‘)] dz
= j‘ol(efv -1 —d:z—l—a:) dz = [ew —r— %.’173-{- %1:2]1

0
=(e—1—§+§)—(1—0—0+0)=e—%

4 " +3y=—y < Y+a4y=0 & yy+4) =0 &
y = 0or —4.

A=/_4 [~y — (& +3y)] dy=/_i(—y2—4y)dy

=[5 -2, =0 (% -32) = 2

= [ () - (- 20) e
[~ cos(%) - 32° + 275

(2340 = (-2-0+0)=§+ 4

2
1

1(\/_—m2)da:+/ (2 - V&) do

0
2,3/ 1 2
3 3 3 3

v




P=y+3 & ¥ -y—-2=0 &
y-2)y+1)=0 & y=20r—1.

=7r/2 [(y+3)2— (1+y2)2] dy

-1

2 2 2 4
=1r/ (" +6y+9—-1-2y% — ) gy
-1
, ) ,
=7r/ (8+6y—y2—‘y4)dy=7r[8y+3y2—%y3—%y5]_1
-1
=w[(16+12—§—%)—(—8+3+§+§)]
1

—x(33- 3= %) = =

ov=r [ {[0-4) -0~ o- )y
=27r/03 [(10-4)% ~ 1] dy
=2r /3(100 — 20y +y* — 1) dy

3
= 271'/ (99 - 20° + y*) dy = 2m[99y — 48 4 -51-y5]§
0

=2m(297 — 180 + 242) — 1656z

0v= ”/_22 {l0-a% - 0P~ [ 4 1) - (-1)]*} da
= W/_i [(10 - 2°)% — (2* + 2)°] dar

2 2
= 27r/ (96 — 242%) dz = 4871'/ (4 - 2% dz
0 0

= 48[4z - 32°]7 = 48x(8 - &) = 256r
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y=x2+1

1. The graph of 2° — 3? = ¢ isa hyperbola with right and
left branches. Solving for y gives us v =22 - g2 =

¥==%vz? — a2, We’ll use shells and the height of each
shell is /22 — g2 — (—vzZ = a?) =2/2% ~ g2,
The volume is V = faa+h 2nz - 24/22 — a2 dx. To eval-

uate, let 4 = 22 ~ a2, s0duy = 2zdr and z dx = %du.
Whenac=a,u=0,andwhenz=a+h,

u=(a+h)2—a2=a2+2ah+h2—a2=2ah+h2.

a. - 2
Thus, V = 4y [2eh40® 7 (3du) = 271'[ §u3/2J: e 37 (2ah + 1?)%2,
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12V = [772 2@ coszdz  [by the method of cylindrical shells]
13.V= fol 7!'{(1 — :1:3)2 —(1- $2)2} dz
8.V = [Z2r(8 - 2*)(2—z)dz »
15. (a) A cross-section is a washer with inner radius z2 and outer radius .
V= fir[@? - (+)°] do = J§ m(2? ~ o*) do = m[2a® - 3%y =n[t-1] =
(b) A cross-section is a washer with inner radius y and outer radius VY.
2 1
V= o n (VB 9] dy = [ m(y —v?) dy = m[3g? — 7] = 3 - 1) =
(¢) A cross-section is a washer with inner radius 2 — z and outer radius 2 — 22,

V= folw[(2 -2%)% - (2- :c)2] dz = folw(m4 — 52% 4 4z) da =73z’ ga:3—|—2:v2](1)
=nli-§+2 -3

16. (a) A = fol (22 — 2% - z°) dx = [#® — $2° — izﬂl =

0

.. L. . . 2
(b) A cross-section is a washer with inner radius 2% and outer radius 2~z

2, s0 its area is 7 (2% — z°)

—7(2®)?,
V=[lAz)ds = IS n[(2:1: - :1:2)2 - (w3)2] dz = [} m(42® — 42 + 2% — z°%) dz

=rlds’ et et 4 (414 - 0) -tk

105
(¢) Using the method of cylindrical shells,

V= fol 27m:(2:1: —z? - m3) dr = fol 271'(2:1:2 -z :c4) dr = 27r[§m3 —

= ):.]-33*(’)”_

17. (a) Using the Midpoint Rule on [0,1] with f(z) = tan (=)

and n = 4, we estimate

A= /Oltan(xz) dz ~ i[tan((%)z) +ta.n((g)2) +tan((§)2) +tan((%)2)] ~ 1(1.53) ~ 0.38

(b) Using the Midpoint Rule on [0, 1] with f(z) = r tan? (2?) (for disks) and n. = 4, we estimate

2((%)2) +tan2((g)2) +tan2((§)2)J ~ £(1.114) ~ 0.87

From the graph, we see that the curves intersect atz =0and

Az =a~0.75withl—-2>> 2%~z +10n(0,a).

(b) The area of R is
A= [Fl(1-2%) ~ (2 —z + 1)] dz = [~1z® - io” + %:cz]g ~ 0.12
(c) Using washers, the volume generated when QR is rotated about the z-axis is
V=mrf’ [(1 - m2)2 — (2 ~z + 1)2] dr =7 [} (—z'% + 227 — 228 4 2% — 352 1 2z) dx

=g[—Llg® 1,8 27,15 3 270
-71'[ 18T + 32 7% +zz z+z]0w0.54




“NA

~ 1(1.53) ~ 0.38
2stimate
;] ~ I(1.114) ~ 0.87

s intersect at z = 0 and

—z + 1 on (0,a).
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(d) Using shells, the volume generated when R is rotated about the y-axis is
V=[r2rz[(1-2%) - (2% —z+1)]dz=2n [ (-2® - 2" +2°) ds
=2n[-1z* - 12° + 12°]; ~ 0.31
19, The solid is obtained by rotating the region ® = {(z,y) | 0 <z < %,0 < y < cosz} about the y-axis.
20, The solid is obtained by rotating the region R = {(z,7) [0 <z < 5,0<y < V2 cosz} about the z-axis.
21, The solid is obtained by rotating the region R = {(z, Y |0<y<2,0<2<4— y2} about the z-axis.
22, The solid is obtained by rotating the region ® = {(z,) |0< 2 < 1,2~ Vo <y <2- 22} about the z-axis.
Or: The solid is obtained by rotating the region R = {(:c,'y) [0<z<1,2°<y<z}abouttheliney = 2.
23, Take the base to be the disk z2+y? <9.ThenV = f_33 A(z) dz, where A(zo) is the area of the isosceles right
triangle whose hypotenuse lies along the line z = o in the zy-plane. The length of the hypotenuse is 2 /9 — 22
and the length of each leg is v/2+/9 — z2. A(z) = %(\/ﬁmf =9—2% 0
v=2[ Alz)ds = 2f03(9 -
W= [ AR ds =2} A do =2} [(2 o) ~ o) o =2 21— ")) o
=8f01(1—2x2+:1;4)d:1::8[:1:——m +iz ] —8(1-2+1)=¢

:1:2) dx = 2[9:1: - %ws]i =2(27—9) = 36.

25. Equilateral triangles with sides measuring ;ll—m meters have height %ac sin60° = ‘/_m Therefore,
20 20 20
Ap)=1 %o Lo= g’ V=[P A)de =G [{"2’ de = £ [32°]) = 2 = B8

26. (a) By the symmetry of the problem, we consider only the solid to the right of the origin. The semicircular
cross-sections perpendicular to the z-axis have radius 1 — z, so A(z) = $7(1 — z)?. Now we can calculate
V=2[lA@)dz =2 [ tn(1 - 2)de = [, n(1—z)*de = —%[(1—:2)3]; =z

(b) Cut the solid with a plane perpendicular to the z-axis and passing through the y-axis. Fold the half of the solid in
the region z < 0 under the zy-plane so that the point (—1,0) comes around and touches the point (1, 0). The
resulting solid is a right circular cone of radius 1 with vertex at (z,y, 2) = (1,0,0) and with its base in the

yz-plane, centered at the origin. The volume of this coneis irr?h = g7 1.1 =%

2.f(z)=ke = 30N=£k(15—12)cm = k=10N/cm =1000N/m. 20cm —12cm =0.08m =

0.08

= [y kz dz = 1000 f; * z dz = 500 [2])"*° = 500(0.08)* = 3.2 N-m = 3.2J.

8. The work needed to raise the elevator alone is 1600 1b x 30 ft = 48,000 ft-Ib. The work needed to raise the bottom

170 ft of cable is 170 ft x 10 Ib/ft x 30 ft = 51,000 ft-1b. The work needed to raise the top 30 ft of cable is

b 10zde = [52°]2° = 5 - 900 = 4500 ft-b. Adding these, we see that the total work needed is

48,000 + 51,000 4 4,500 = 103,500 ft-1b.
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29. (a) The parabola has equation y = ax® with vertex at the origin and passing

through (4,4). 4=a-4> = a=; = y=1z?

= gz = 2,/y. Each circular disk has radius 2 ,/y and is moved 4 —y ft.

= 22 =4y

W:fo47r (2\/5)262.5(4—1;) dy = 2507rf:y(4—y)dy

—250m[2y” — 14°]s = 250m(32 — &) = 2% ~ 8378 ft-lb

(b) In part (a) we knew the final water level (0) but not the amount of work
done. Here we use the same equation, except with the work fixed, and the
lower limit of integration (that is, the final water level — call it h)

unknown: W = 4000 < 250m[2y? — 34°]; = 4000 &

16 _ [(39_ 64) _ (2h2 — Lp%)] & R®—6h2+32-%£ =0
T 3 3 7 ~17

We graph the function f(h) = h® — 6h% +32 — 48 o, the interval [0, 4] to see where it is 0. From the graph,
f(h) = 0 for h = 2.1. So the depth of water remaining is about 2.1 1t

0. foe = iy [0t sin@?) dt = & [y sinu(3du)  [w=1% du=2tdl]

1 100 1 1
L [— cos u] = 35(—cos 100+ cos0) = 55(1 — cos 100) ~ 0.007

. . 1 oth . F(z+h)—F(z) =
3. Jim foe = Jim gy / Ftydt = lim ) where F(x) = [* £(£) dt. But we

il
. I‘vmlﬂh’

recognize this limit as being F”’(z) by the definition of a derivative. Therefore, %irrh fae = F'(z) = f(=)

by FTCI.
32. (a) R, is the region below the graph of y = 22 and above the z-axis between = 0 and z = b, and Rz is the
region to the left of the graph of z = /Yy and to the right of the y-axis betweeny = Oand y = b2. So the area of

b2
Ry is A1 = fob 2 dz = [%xﬂg = %bs, and the area of Rz is Ao = fcf2 Vydy = [%ys/z]o = %bs. So there

is no solution to A; = Az forb # 0.

(b) Using disks, we calculate the volume of rotation of %, about the z-axis tobe Vi z = 7 [, : (w2)2 dz = inb’.
Using cylindrical shells, we calculate the volume of rotation of 1 about the y-axis to be
Viy = 2 [P 0(2?) do = 2n[L2"]) = fmbt So Vie = Viy & Fmb’ = Irpt & 2b=5 &
b= % So the volumes of rotation about the z- and y-axes are the same forb = %

(c) We use cylindrical shells to calculate the volume of rotation of Rz about the T-axis:
2 b2 )
Ro,z = 27 f: y(vo )dy =2m [%yw 2] 0 = %ﬂ'bs. We already know the volume of rotation of 9 about the
w-axis from part (b), and Rz = Roe & §70° = £b°, which has no solution for b 7# 0.
(d) We use disks to calculate the volume of rotation of Re about the y-axis:
b2 2 1.2 b2 1 4 . :
Royy =7 [, (VI) dy= 7[3y?], = 37b* We know the volume of rotation of Ry about the y-axis from

part (), and Ry = Ry & 37b° = 1b*. But this equation is true for all b, so the volumes of rotation
about the y-axis are equal for all values of b.




