#4

NAME: KEY

- 1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F.
 - T (f) If f is differentiable, and f'(c) = 0, then f(c) is a local maximum.
 - T F Substitution yields: $\int_0^1 y(y^2+1)^5 dy = \int_0^1 \frac{1}{2} u^5 du$
 - T (F) $\int_{-1}^{1} \frac{1}{x^2} dx = \frac{-1}{x} \Big|_{-1}^{1} = \frac{-1}{1} \frac{-1}{-1} = -2$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

2. [5] Given the graph of a force function with respect to distance below, graph the total work as a function of distance.

(1.2) /2 = 4

3+ 1/2/11=4

3. [10] Let $f(t) = t \sin 2t$. Find the average value of f on the interval $[0, \pi]$.

$$\frac{1}{\pi-0} \int_{0}^{\pi} t \sin 2t \, dt = \frac{1}{\pi} \int_{0}^{\pi} t \sin 2t \, dt = \frac{1}{\pi} \left[-t \cos 2t + \int_{0}^{\pi} \cos 2t \, dt \right]_{0}^{\pi}$$

$$= \frac{1}{\pi} \left[-t \cos 2t + \frac{1}{2} \cos 2t + \frac{1}{2} \cos 2t \right]_{0}^{\pi}$$

TRED [u. t v= 3 cos 2 t du: dt dv= sin 2 t dt

Check:

8t(-5tcos2t+4sin2t)

-5[-tsin2t.2+3cos2t]+4.2cos2t

tsin2t-5cos2t+12cos2t

= $\frac{1}{4} \left[-\frac{1}{3} \cos 2 + \frac{1}{3} \frac{1}{3} \sin 2 + \frac{1}{3} \cos 2 + 2 + \frac{1}{3$

(b) [4] Interpret $\int_{1}^{e^{2}} |\ln x - (\frac{-1}{e(e-1)}x + \frac{e}{e-1})| dx$ as the area of a region.

The clos value insists the case taken will be positive thus the above default in legal corresponds to large A + 1 area $B = \frac{e^{2}}{e^{2}}$ and A + 1 area $B = \frac{e^{2}}{e^{2}}$ and A + 1 area $B = \frac{e^{2}}{e^{2}}$

(c) [5] Explain how to evaluate $\int_{1}^{e^{2}} |\ln x - (\frac{-1}{e(e-1)}x + \frac{e}{e-1})| dx$, but do not perform the evaluation.

 $\int_{1}^{e} \left(\frac{-1}{e(e-1)} \times \frac{e}{e-1}\right) - \ln x \, dx + \int_{0}^{e^{2}} \ln - \left(\frac{-1}{e(e-1)} \times \frac{e}{e-1}\right) \, dx$

5. [15] Consider the solid whose base is the region bounded by the parabolas $y = x^2$ and $y = 2 - x^2$. The cross-sections perpendicular to the x-axis are squares with one side lying along the base. Sketch the volume and then find its volume.

notation (F)

In Z (occading) Dx

lin Z (topline-bottonline)2 A X

 $\lim_{\Delta x \to 0} \frac{1}{2} \left(2 - x^2 - x^2 \right) \Delta x$

$$\int_{-1}^{1} (2-x^2-x^2) dx = 2 \int_{0}^{1} (22x)^2 dx = 2 \int_{0}^{1} (22x$$

bourds (+1) $= 2 \int_{0}^{2} (4 - 8x^{2} + 4x^{4}) dx \quad \text{int } (+1)$ $= 2 \int_{0}^{1} (4 - 8x^{2} + 4x^{4}) dx \quad \text{int } (+1)$ $= 2 \int_{0}^{1} (4x - \frac{8}{3}x^{3} + \frac{4}{5}x^{5}) dx$

 $= 2 \left[4 - 8/3 + 4/5 \right] = 2 \left[\frac{60 - 40 + 127}{15} \right]$

$$=2^{4}\left[\frac{32}{15}\right]=\frac{64}{15}$$

215 40

12

6. [10] Recall the Mean Value Theorem from first term calculus:

If g is a continuous function on the closed interval [a, b], and differentiable on the open interval (a, b), then there is a number c between a and b such that

$$g'(c) = \frac{g(b) - g(a)}{b - a}$$

Prove that if f is continuous on [a, b], then there exists a number c between a and b such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

Hint: consider $F(t) = \int_{-t}^{t} f(x)dx$.

Since F(t) is con't on [a,b] & diff on (a,b)

Thy FTCII, the mean value Thin Sur 251 gives.

Says I ce [a,b] >

F(b)-F(a)

b-a.

Consider the RHS:
$$S^{b}(x)dx - S^{a}(x)dx$$

$$F(b) - F(a) = S^{b}(x)dx - S^{a}(x)dx$$

$$= S^{b}(x)dx \quad \text{Since } S^{a}(x)dx = 0$$

The LHS
$$F'(c) = (ds)^{b}(x)dx$$

$$= S^{b}(x)dx \quad \text{Since } S^{a}(x)dx = 0$$

$$= S^{b}(x)dx \quad \text{Since } S^{a}(x)dx$$

$$= \frac{2}{4}$$

$$= \frac{$$

which
$$Since 2HS = RHS$$
 $Since 2HS = RHS$
 $Since 2HS$
 $Since 2HS$