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1. [6] TRUE/FALSE: Circle T in each of the followmg cases if the statement is always
" true. Otherwise, circle F. -

T @ If f is differentiable, and f'(c) = 0, then f(c) is a local maximum.
T @ Substitution yeilds: Iol y(y® + 1)5dy = fol Tubdu

T @ Jhimde =2, =3 - =2

Show your work for the follo'Wing problems. The correct answer with no
supporting work will receive NO credit.

2. [5]Given the graph of a force function with respect to distance below, graph the total
work as a function of distance.
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3, [10] Let f(t) = ¢sin2¢. Find the average value of f on the interval [0, 7).
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‘}7 4. (a) [8] Interpret / Inz — (e e=1) x+ . ° 7 )dz as the area of a region, by sketching
PSS 1 — —

a graph. Hint: x = e and z = €* are good points to plot.
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(b) [4] Interpret / |Inz — (e = 1)33 +— 1)|d:v as the area of a region.
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(c) [5] Explain how to evaluate / [Inz — (- z+ — )|dz, but do not per-
1 éle—1) e—1

form the evaluation.
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5. [15] Consider the solid whose base is the region bounded by the parabolas y = z? and
y = 2 — 2%, The cross-sections perpendicular to the z-axis are squares with one side
lying along the base. Sketch the volume and then find its volume.
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[10] Recall the Mean Value Theorem from first term calculus:

If g is a continuous function on the closed interval [a, b], and differentiable on the open
interval (a, b), then there is a number ¢ between a and b such that

Lo g(b) ~ g(a)
Q(C)z“ﬁ—*

Prove that if f is continuous on [a, ], then there exists a number ¢ between ¢ and b]
such that

/f(a:)da:-— fe)(b— a)

Hint: consider F(t / f(g;)dg;
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