Lune Area

1. Draw a double lune on the sphere provided with angle 90°, $\frac{\pi}{2}$, or $\frac{\tau}{4}$ radians.

- 2. Recall that the total surface area of a sphere with radius one is 4π . Find the area of the double lune that you drew.
- 3. Find the area of the double lune with angle $\frac{\pi}{n}$ or $\frac{\tau}{2n}$ radians.

- 4. Find the area of the double lune with angle 120°, $\frac{2\pi}{3}$, or $\frac{2\tau}{6}$ radians.
- 5. Find the area of the double lune with angle $\frac{m\pi}{n}$.

6. Is your answer above consistent with the text, "the area of a double lune with angle α is 4α "?

Triangle Area

- 1. Shade the double lune with angle x, y, and z, respectively, on each sphere above.
- 2. Let A_x be the area from the double lune with angle x. Similarly define A_y and A_z . Find the values for A_x , A_y , and A_z .

- 3. Consider the union of A_x , A_y , and A_z . That is, the areas covered by A_x , A_y , and A_z .
 - (a) Have we counted all the area on the sphere?
 - (b) Have we counted any area on the sphere more than once?