Lune Area

1. Draw a double lune on the sphere provided with angle $90^{\circ}, \frac{\pi}{2}$, or $\frac{\tau}{4}$ radians.
2. Recall that the total surface area of a sphere with radius one is 4π.
Find the area of the double lune that you drew.

3. Find the area of the double lune with angle $\frac{\pi}{n}$ or $\frac{\tau}{2 n}$ radians.
4. Find the area of the double lune with angle $120^{\circ}, \frac{2 \pi}{3}$, or $\frac{2 \tau}{6}$ radians.
5. Find the area of the double lune with angle $\frac{m \pi}{n}$.
6. Is your answer above consistent with the text, "the area of a double lune with angle α is 4α "?

Triangle Area

1. Shade the double lune with angle x, y, and z, respectively, on each sphere above.
2. Let A_{x} be the area from the double lune with angle x. Similarly define A_{y} and A_{z}. Find the values for A_{x}, A_{y}, and A_{z}.
3. Consider the union of A_{x}, A_{y}, and A_{z}. That is, the areas covered by A_{x}, A_{y}, and A_{z}.
(a) Have we counted all the area on the sphere?
(b) Have we counted any area on the sphere more than once?
