NAME:

1. [3] (4/5 Class) Identify one key difference between Flatland the book and Flatland the movie. Explain why you think the movie makers made this change.
2. [3] (Weeks §1) Explain how A Square used red and blue string to motivate his fellow flatlanders into making a map of Flatland.
3. [4] (HW3 \#4) Group the following images into sets that have the same topology.

4. [2] (TED Video) Provide two non-decorative or artistic used for origami from "the real world".
5. [3] (Weeks §3) A tic-tac-toe board being played on a projective plane is shown to the right. The game was started by X and now it is X 's turn.
What is X 's best move? Justify your choice.

6. [6] Match the items on the left to items with the same topology on the right.

3D flat torus

7. [3] (Weeks §3) Find a closed homogeneous 1 manifold.
8. [4] (HW2 \#1) Find the signature for each of the following.

9. [2] (4/19 Class) Examine the Origami instructions to the right. What is the meaning of the circled instruction?

F.W.'s Origami Wombat
 middle. Fold the top and bottom in to meet the crease.

Fold the shope along the middle so that you bring the bottom edge up to meet the top edge. hip this shope over so thot you

Fold the triangles that meet in the middle down so that they tom of the body.

This is the body of the wombat. Now it's time to give it some legs!

10. [5] (HW3 \#1) Identify all possible signatures of a two dimensional tiling that includes only red symbols and the symbols *32. Be sure to explain clearly how you know you have found all the possibilities!

Symbol	Cost (\$)	Symbol	Cost (\$)
O	2	$*$ or \times	$\frac{1}{4}$
2	$\frac{1}{2}$	2	$\frac{1}{4}$
3	$\frac{2}{3}$	3	$\frac{2}{6}$ or $\frac{1}{3}$
4	$\frac{3}{4}$	4	$\frac{3}{8}$
5	$\frac{4}{5}$	5	$\frac{4}{10}$ or $\frac{2}{5}$
6	$\frac{5}{6}$	6	$\frac{5}{12}$
\ldots	\cdots	\cdots	\cdots
	$\frac{n-1}{n}$	n	$\frac{n-1}{2 n}$

NAMES:

The Largest Equilateral Triangle

inspired by Thomas Hull's "What's the biggest Equilateral Triangle in a Square" in Project Origami, activities for exploring mathematics.

1. [5] Find a way to fold an equilateral triangle inside a patty paper. Recall that an equilateral triangle is a triangle with all sides the same length. Explain your methods clearly and consider providing diagrams.
2. [10] Find the largest equilateral triangle that will fit on a patty paper. Justify that you have found the largest equilateral triangle. Hint: use the corners of the patty paper and consider symmetry!
