

Homework #6

- 1. [9] Angle sum worksheet. (Please turn in only one copy per group!)
- 2. [3] Recall that $\mathbb{T}^2 \# \mathbb{P}^2$ is topologically equivalent to $\mathbb{K}^2 \# \mathbb{P}^2$.
 - (a) Does this mean that \mathbb{T}^2 is topologically equivalent to \mathbb{K}^2 ? Justify your answer.
 - (b) Find another surface that can be written in two different ways where one makes use of \mathbb{T}^2 and the other makes use of \mathbb{K}^2 .
- 3. [4] For each surface below:
 - (a) Identify the object using the connect sum of only S^2 's, \mathbb{T}^2 's, and \mathbb{P}^2 's.
 - (b) Compute its Euler number χ .

- 4. [4] For each of the following surfaces described:
 - (a) write the object using the connect sum of only S^{2} 's, \mathbb{T}^{2} 's, and \mathbb{P}^{2} 's.
 - (b) identify the object from the two lists on page 80.
 - (a) $\mathbb{P}^2 \# \mathbb{K}^2 \# S^2$
 - (b) $\mathbb{K}^2 \# \mathbb{T}^2$