Exam 1 Math 2113

Name:

Show all your work on the following. A right answer with no supporting work will receive no credit.

- 1. Determine whether the statement is *always* true, *sometimes* true, or *never* true. If you believe it is never true or always true, justify your answer (citing a theorem or a formula from the book does not suffice). If it is sometimes true provide an example when it is true and an example when it is not true.
 - (a) [4] Two lines that never intersect are parallel.

(b) [4] Vertical angles are supplementary.

(c) [4] An equilateral triangle is isosceles.

(d) [4] A network with four odd vertices is a traversable network.

- 2. Consider a correctly set clock that stars ticking at noon and answer the following:
 - (a) [6] Find the measure of the angle swept by the hour hand by the time it reaches 6:50 pm.

(b) [8] What is the first time after noon when the hour and minute hands form 90° ?

3. [5] The following was constructed by selecting a point A on the horizontal line and then choosing an arbitrary point \underline{B} not on the line to construct the ray passing through A and B. The remaining rays \overrightarrow{AE} and \overrightarrow{AF} bisected angles DAB and BAC respectively. Prove the measure of the angle EAF is 90°.

4. [4] Given that the lines a and b are parallel and that CDE is a right angle, find the measure of angle ACD. **m∠BAC = 25.00°**

5. For the following questions refer to the figure to the right

- (a) [2] Mark any "*" points where multiple mirrors meet.
- (b) [2] Mark any points of rotation.
- (c) [2] Find the signature for the figure.(You might make use of the following tables to verify you recorded all of the symmetries:)

Red Symbol:	*	2	3	4	5	•••	N
Cost:	1	$\frac{1}{4}$	$\frac{2}{6}$	$\frac{3}{8}$	$\frac{4}{10}$	•••	$\frac{N-1}{2N}$
Blue Symbol:	2	3	4	5	6		N
Cost	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	•••	$\frac{N-1}{N}$

6. (a) [2] Draw a prism with a square base.

(b) [3] How many faces are on a prism with an n-gon as a base? Why?

(c) [3] How many vertices are on a prism with an n-gon as a base? Why?

(d) [4] Recall Euler's formula: The number of vertices-the number of edges+the number of faces in a closed polyhedron is 2. Use this and parts b) and c) to find the number of edges in a prism with an *n*-gon as a base.

7. [2] Plot a triangle with vertices A, B, and C at (2, -2), (3, 4), and (8, 1) respectively.

(a) [2] Draw the image of the triangle ABC under the translation:

$$(x,y) \to (x-2,y+3).$$

- (b) [3] Draw the image of the triangle ABC under the rotation about the origin by -90° .
- (c) [3] Draw the image of the above triangle under a reflection across the x-axis.
- 8. [8] Explain why a size transformation with a center at (0,0) and a scale factor of r sends (x, y) to (rx, ry).