You are welcome to use any written homework from Chapter 2, worksheets you completed, and a calculator but no books or class notes. Show *all* your work (algebraically or geometrically) for each and simplify. No credit is given without supporting work.

1. Let
$$f(x) = \frac{(5+x)^2 - 25}{x}$$

- (a) [3] Use small values of h to estimate $\lim_{x\to 0} f(x)$.
- (b) [3] Use the properties of limits and algebra to find $\lim_{x\to 0} f(x)$.

(c) [2] Graph f(x) below and verify your answers above.

			20 y			
			15			
			10			
			5			
-20	-15	-10	-5 0	5	10	15 _x
			-5			
			-10			

2. Let g be the piece-wise defined function below. This means the graph of g is the *entire* dotted graph shown below.

(a) [6] Find the following *if* it exits: $\lim_{x \to 1} g(x) \qquad \lim_{x \to 0} g(x) \qquad g(0)$

$$\lim_{x \to 2} 5g(x) \qquad \qquad \lim_{x \to -2} g(x) \qquad \qquad \lim_{x \to 4} g(x)$$

2

[0]