EXAM 2 /\ J\ | TQS 211, ,| I Practice

Note: This is & practicgéﬂ:erm and is intended only for study purposes. The actual exam
will contain different gquestions and perhaps a different layout.

1. [| TRUE/FALSE: Circle T in each of the following cases if the statement is always

true. Otherwise, circle F. Let f and g be functions, and z and y be real numbers.

(TOF @) =2
T @ cos(z +y) = cos(z) + cos{y)

@ F If f(a) <0, then the graph of f(z) is decreasing when % = a.

@F When MC = MR the company may be maximizing profit.
Show your work for the following problems. The correct answer with
no supporting work will receive NO credit (this includes multiple choice

questions).



2. [| For each rule of f given below, find f'(z).

f(z) = sin(z) -+ % ' f(z) = 25 + In(7z%)
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3. Let f be the function whose graph is on the left and g be the function whose graph is
on the right.
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4. The oil spill in the gulf is being fed by a well that produces approximately 777 cubic

meters per day. Assume for now that the oil spill is approximately circular and the
thickness of the oil is uniformly half a meter thick.

(a) Write down a relationship between the total volume of the oil and the radius of
the oil spill.
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(b) What rate is the volume of the oil cylinder expanding per hour?
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(c) How fast is the radius of the oil spill changing when the oil spill is 200 meters Y u?
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5 There is a “Rule of 70" or “Rule of 7" that commonly arrises in economic or financial
circles. The rule is as follows: The time is takes your money to double at an interest
rate of 7 is approximately ng-. We will find out where this rule comes from.
. {a) Assume you have P, dollars to invest. You find an investment that promises an
offective annual interest rate of r%. Write down a function that describes how
much money you have after ¢ years. (This is a throw back from §1.5.)
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(b) We want to know when the investment doubles, that is, find  so that you have a

total of $2F. :
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(c) Draw the graph of Inz on the axis provided.
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(d) Find the equation of the line that

is tangent to the graph of Inz
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(e) Use the line you found in (d) to approximate the function Inz when z is near 1
to simplify your answer in (b). Note, since r is usually closer to .05 than to .95,
we can think of 1+ r as a number close to 1.
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6. [| A manufacture has been selling 1000 televisions a week at $360 each. A market
survey indicates that for each $26 rebate offered to a buyer, the number of sets sold
will increase by 260 per week. Let g be the number of televisions demanded and p be

the price.
(a) Assume the relationship between the demand ¢ and the price p is linear. Express
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(b) Use the work from above to express thé revenue, R, as only a function of g.
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{c) 1f the weekly cost function if 60000 + 120g, where ¢ is the number of television
sets sold per week, how should it set the size of the rebate to maximize its profit?
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