EXAM 2 TQS 211

Practice

Note: This is a practice midterm and is intended only for study purposes. The actual exam will contain different questions and perhaps a different layout.

- 1. [] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F. Let f and g be functions, and x and y be real numbers.
 - T F (2f)'(x) = 2f'(x)
 - T F $\cos(x+y) = \cos(x) + \cos(y)$
 - T F If f'(a) < 0, then the graph of f(x) is decreasing when x = a.
 - T F When MC = MR the company may be maximizing profit.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions). 2. [] For each rule of f given below, find f'(x). $f(x) = \sin(x) + \frac{3}{2}$

$$f(x) = \sin(x) + \frac{3}{x}$$
 $f(x) = 2x^2 + \ln(7x^2)$

$$f(x) = \frac{3^x \cos(x)}{\sin(x)} \qquad \qquad f(x) = (\sqrt{3x^4 - x})(e^x - 4)$$

3. Let f be the function whose graph is on the left and g be the function whose graph is on the right.

				y ⁴ ,									y ⁴				
				3	\frown								3			g'	
					ĺ	f				\searrow			2				
				<u>г</u> ,		$\left[\right]$							1				
5 -	4	3 -	2 -	1 0			2 (3 4	5 -	4 -	3	2 -	10	1	2		x
f				-1								$\overline{\ }$	-1			g	
				-2				\square					-2				
				-3									-3				

- (a) [10] Estimate the following (if they exist):
 - $f'(-3) \qquad \qquad \left(\frac{f}{g}\right)'(-4)$

$$(f \cdot g)'(-3) \tag{f \circle g)'(2)}$$

- 4. The oil spill in the gulf is being fed by a well that produces approximately ??? cubic meters per day. Assume for now that the oil spill is approximately circular and the thickness of the oil is uniformly half a meter thick.
 - (a) Write down a relationship between the total volume of the oil and the radius of the oil spill.
 - (b) What rate is the volume of the oil cylinder expanding per hour?
 - (c) How fast is the radius of the oil spill changing when the oil spill is 200 meters across?

- 5. There is a "Rule of 70" or "Rule of 7" that commonly arrises in economic or financial circles. The rule is as follows: The time is takes your money to double at an interest rate of r is approximately $\frac{70}{r}$. We will find out where this rule comes from.
 - (a) Assume you have P_0 dollars to invest. You find an investment that promises an effective annual interest rate of r%. Write down a function that describes how much money you have after t years. (This is a throw back from §1.5.)
 - (b) We want to know when the investment doubles, that is, find t so that you have a total of $2P_0$.

- (c) Draw the graph of $\ln x$ on the axis provided.
- (d) Find the equation of the line that is tangent to the graph of $\ln x$ at x = 1.

	ucu.							
				y4	,			
				2				
5 -	4 -	3 -	2 -	1 0		2	3 4	x
				-1				

(e) Use the line you found in (d) to approximate the function $\ln x$ when x is near 1 to simplify your answer in (b). Note, since r is usually closer to .05 than to .95, we can think of 1 + r as a number close to 1.

- 6. [] A manufacture has been selling 1000 televisions a week at \$360 each. A market survey indicates that for each \$26 rebate offered to a buyer, the number of sets sold will increase by 260 per week. Let q be the number of televisions demanded and p be the price.
 - (a) Assume the relationship between the demand q and the price p is linear. Express p as a function of q.

- (b) Use the work from above to express the revenue, R, as only a function of q.
- (c) If the weekly cost function if 60000 + 120q, where q is the number of television sets sold per week, how should it set the size of the rebate to maximize its profit?