TQS 211

Practice

Note: This is a practice midterm and is intended only for study purposes. The actual exam will contain different questions and perhaps have a different layout.

- 1. [] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F.
 - T F $\frac{3x+y}{3z} = \frac{x+y}{z}$
 - T F $(x+y)^2 = x^2 + y^2$
 - T F $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} f(x)}$ for all a
 - T F No profit is made when MR < MC

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

2. Find $\lim_{x\to 3} \frac{x^2 - 4x + 3}{(x-3)(x+1)}$ using properties of limits.

3. Let f be the function whose graph is on the left and g be the function whose graph is on the right.

				y ⁴	Ĺ								y4.	Î				
				3	\square				\square				3			g'		
					Í Ì	f				\searrow			2					
				1		\backslash							T					
								· / ~										
5 -	4	3 -	2 -	1 0			3 4		5 -	4 -	3	2 -	1 0		2			x
5 -		3 -	2 -	1 0			3 2		5 -	4 -	3	-	1 0 -1			g	3	x
5 -	4	3 -	2 -	1 0 -1 -2					5 -	4 -	3	2	1 0 -1 -2			g	3	x

- (a) [10] Find the following (if they exist):
 - $\lim_{x \to -2} f(x) \qquad \qquad \lim_{x \to -1} (\frac{g(x)}{5} 2)$

$$\lim_{x \to 0} 2f(x) \qquad \qquad g(-4)$$

- $(g \circ f)(-4) \qquad \qquad g'(-4)$
- (b) Find all the x values that f is discontinuous.
- (c) [3] Sketch the graph of g'.

				y4				
				3				
				2				
				1.				
5 -	4 -	3 -	2 -	1 0	2	2	8 4	x
5 -	4 -	3 -	2 -	1 0 -1	2	2 3	8 2	x
5 -	4 -	3 -	2 -	1 0 1' 2	 2	2 (3 2	x

- 4. The demand curve for a product is given by q = 300 3p, where p is the price of the product and q is the quantity consumers will buy at that price.
 - (a) [2] Write the revenue as a function of *only* price (there should be no q's).
 - (b) [3] Find the marginal revenue when the price is \$10, and interpret your answer in terms of revenue.
 - (c) [4] If the marginal cost of making the product is \$20, and the business has the ability to set the price (by controlling q), what should the business set the price to so as to maximize profit?

5. Sketch a graph of a function α that satisfies *all* of the following:

 $\alpha(-1) = -3, \lim_{x \to -1} \alpha(x) = 2, \alpha \text{ is not continuous at } x = 4, \text{ and for all } x > 0, \alpha''(x) < 0.$

				y4,				
				3				
				2				
								• · · ·
5	-4 -	3 -	2 -	10	2	2	3 2	x
ō	-4 -	3 -	2 -	1 0 -1'	2	2 (3 2	x [‡]
5	-4 -	3 -	2 -	1 0 -1 -2			3 2	x ^e

- 6. Let $m(x) = (x+2)^2$. (a) [1] Carefully graph f. 5 -4 -3 -2 -1 0 2 3 4 $x^{\frac{5}{2}}$
 - (b) Estimate m'(-3).
 - (c) Find m'(-3) algebraically.

- (d) Draw the line tangent to the graph of m at x = -3.
- (e) Find an equation for the line tangent to the graph of m at x = -3.

- 7. A company's cost of producing q liters of a chemical is C(q) dollars; this quantity can be sold for R(q) dollars. Suppose C(2000) = 5930 and R(2000) = 7780.
 - (a) What is the profit at a production level of 2000?
 - (b) When production is increased to 2001 the total cost is \$5930.10 and total revenue is 7782/5. Estimate MC(2000) and MR(2000).
 - (c) If MC(2000) = 2 and MR(2000) = 2.5, what is the approximate change in profit if q is increased from 2000 to 2010?
 - (d) Should the company increase or decrease production from q = 2000?
- 8. [] Find the derivative of $f(x) = \frac{2}{x-3}$ algebraically.