Integrals below the x-axis

Recall $\int_a^b f(x) dx$ corresponds to the area 'below' the graph of f from a to b marked on the horizontal axis. More precisely, $\int_a^b f(x) dx$, is the area bounded by the graph of f, the horizontal axis, and the two vertical lines x = a and x = b.

To approximate $\int_{a}^{b} f(x) dx$, we use rectangles with width Δx and a height determined by f. For example if we used the left hand approximation with two rectangles we would compute: $\int_{a}^{4} f(x) dx = f(2)\Delta x + f(3)\Delta x$

$$\int_{2}^{2} f(x) dx = f(2) \Delta x + f(3) \Delta x$$
1. Let $f(x) = -\frac{1}{2}x + 1$.

(a) Draw f.

(b) What is $f(3)$?

(c) Use left hand approximation with two rectangles to compute $\int_{2}^{4} f(x) dx$.

$$\int_{2}^{4} f(x) dx$$
.

$$\int_{2}^{4} f(x) dx$$

Point: If f is below the horizontal axis from [a, b], $\int_a^b f(x) dx$ returns the area bound between the horizontal axis, the graph of f, and the vertical lines x = a and x = b, but with a *negative sign*.

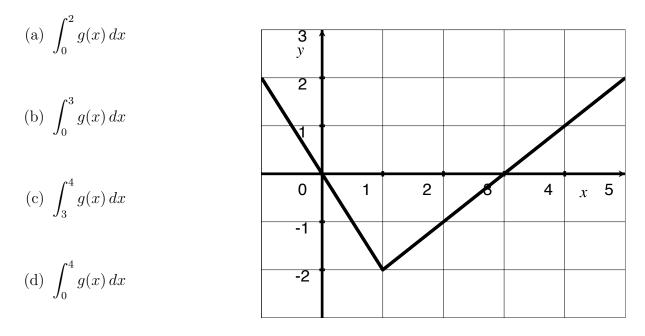
- (d) Find $\int_2^4 f(x) dx$ exactly.
- (e) Find $\int_{2}^{3} f(x) dx + \int_{3}^{4} f(x) dx$ exactly. What is the relationship between your calculations in part (d) and part (e)?

If we think of $\int_{2}^{4} f(x) dx$ as an area, we can convince ourselves rather quickly that

$$\int_{2}^{4} f(x) \, dx = \int_{2}^{b} f(x) \, dx + \int_{b}^{4} f(x) \, dx$$

where b is a number between 2 and 4. Much more can be shown if we look closer but lets leave it there for now.

2. Let g be the function whose graph is below. You may want to use the above observations to find (exactly):



3. Given the graph of h, determine if $\int_0^5 h(x) dx$ is positive, negative, or about zero.

