Implicit Differentiation

1. Assume that y is a function of x. Find $\frac{dy}{dx}$ in the following:

(a)
$$x^3 + y^3 = 8$$

(b)
$$y = x^2y^3 + x^3y^2$$

$$(c) y = \sin(2x + 5y)$$

(d)
$$e^{xy} = e^{3x} - e^{4y}$$

2.	Let C be the graph of a circle centered at $(1,0)$.
	(a) Write down the equation of the circle C that you are working with.
	(b) Find the equation of line tangent to C at $x=2$.
	(c) Find the point that the above line crosses the x-axis.
3.	A latter is 10 feet long and leaning against a wall with its base x feet away from the base of the wall.
	(a) Draw a picture of the situation described above and label y as the vertical distance from the tip of the latter to the floor.
	(b) Find a relationship between x and y .