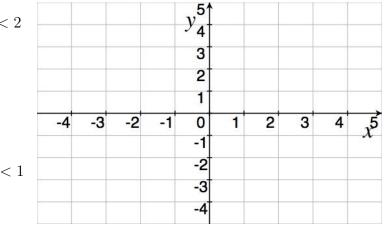
Extrema & Inflection Point

Note: a personal copy of this worksheet may be used during the quiz next Tuesday.

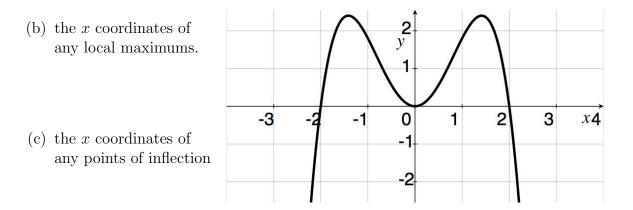
1. Let $f(x) = x \ln(x^2)$.

(a) Find the critical points of f.


(b) Find the x and y values of all the local maximums of f.

(c) Find all inflection points of f.

- 2. Consider the parabola determined by $y = ax^2 + bx + c$ where a, b, and c are real numbers.
 - (a) Use calculus to find the critical points of the parabola. (Remember, a, b, and c are to be treated as constants.


(b) Does your answer from above seem familiar? What is another name for the point that you just found?

- 3. Sketch a graph of a function α that satisfies *all* of the following:
 - $\alpha'(x) < 0$, when x < -3
 - $\alpha'(x) \ge 0$, when -3 < x < 2
 - $\alpha'(x) = -2$ when 2 < x
 - $\alpha'(2)$ is not defined
 - $\alpha'(-3) = \alpha'(1) = 0$
 - $\alpha''(x) > 0$, when x < -2& when 1 < x < 2
 - $\alpha''(x) < 0$, when -2 < x < 1

4. Consider $g(x) = x^4$. Use g to show that the roots of g'' are not necessarily points of inflection.

- 5. Let β be the function whose *derivative* is shown below. Find:
 - (a) the critical points of β .

