EXAM 1 TQS 211 Spring 2010

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

- 1. (Limits Worksheet) Let $f(x) = \frac{-3x^2 6x}{x+2}$.
 - (a) [3] Estimate $\lim_{x \to -2} f(x)$ either numerically or graphically. State which method you used and provide either calculations or a graph to support your answer.

(b) [3] Use algebra and properties of limits to find $\lim_{x \to -2} f(x)$ exactly.

2. [6] (Practice Exam) Sketch a possible graph of a function α that satisfies *all* of the following:

(a) $\lim_{x \to -2} \alpha(x) = \infty$,,5↑					
(b) $\alpha(-2) = 1$					^y 4					
(c) α is not continuous					3					
at $x = -1$.					2					
(d) $\alpha'(x) = 0$ when $x = 3$					1					
(e) $\alpha''(x) < 0$	-4	-3	-2	-1	0	1	2	3	4	₇ 5
when $0 < x < 3$					-1					A
					-2					
					-3					
					-4					

3. (Quiz 2) Let g be the piece-wise defined function below. This means the graph of g is the *entire* dotted graph shown below.

(a) [7] Estimate each of the following *if* it exits: g(-4) $\lim_{x \to -3} g(x)$ $\lim_{x \to -2} g(x)$

$$\lim_{x \to 1} (5g(x) - 3) \qquad g'(1) \qquad g'(2.5)$$

(b) [4] Find all x values that g is discontinuous.

- 4. Consider $\beta(x) = \frac{1}{x}$.
 - (a) [1] Carefully graph β .
 - (b) [1] Find the average rate of change of β from x = 1 to x = 2.

				v					
			1	- 4					
				3					
				2					
				1			1		
-4	-3	-2	-1	0	1	2	3	4	_
				-1					
				-2					
				-3			1		
				-4					_

- (c) [1] Estimate $\beta'(1)$.
- (d) [4] Find $\beta'(1)$ algebraically.

- (e) [1] Draw the line tangent to the graph of β at x = 1.
- (f) [5] Find an equation for the line tangent to the graph of β at x = 1 (ie the line that you drew in part (e).

- 5. (§2.5 Worksheet) An industrial production process costs C(q) million dollars to product q million units; these units then sell for R(q) million dollars. Assume C(2.1) = 5.1, R(2.1) = 6.9, MC(2.1) = 0.6, and MR(2.1) = 0.7.
 - (a) [2] Explain what MR(2.1) = 0.7 means in terms of production and dollars.
 - (b) [1] Find the profit earned by producing 2.1 million units.
 - (c) [2] Should the company increase or decrease production? Why?
 - (d) [4] Estimate the total revenue when production is increased from 2.1 to 2.15 million units.

(e) [5] Estimate the total profit when production is increased from 2.1 to 2.15 million units.