As a reminder, you are welcome to use a two-sided 3.5 " by 5 " index card with notes (written or typed), a non-internet accessing calculator (which includes Desmos Test Mode) but no books, other notes, or peers.

1. [6] TRUE/FALSE: Write True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, write False and provide a counterexample or brief justification.
(a) (3DActivity\#3) The limit, $\lim _{(x, y) \rightarrow(2,1)} \frac{x-2}{x^{2} y-4 y}$ is not defined because the limit evaluates to " $0 / 0$ ".
(b) (WebHW14.6\#2) Given $f(x, y)=x^{2} \ln (y)$ and $\vec{u}=\langle-5,1\rangle$ we can compute the directional derivative of f in the direction of \vec{u} at point $(4,1)$ as follows:

$$
D_{\vec{u}} f(4,1)=\nabla f(4,1) \cdot\langle-5,1\rangle=\left\langle 2(4) \ln (1), 4^{2} \frac{1}{1}\right\rangle \cdot\langle-5,1\rangle=0+16=16
$$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. [2] (WebHW14.8 \#1) A contour map of $f \&$ a curve with the equation $g(x, y)=8$ is shown. Estimate the maximum values of f subject to the constraint that $g(x, y)=8$.

3. [6] For this problem outline (you do not actually need to find!) a solution. Make sure your outline includes:
(a) definitions of variables used,
(b) identifying the function that needs to be optimized,
(c) boxing systems of equations that need to be solved (but do not solve them!), \&
(d) explaining how you would verify your work is correct (ie a maximum)
(§14.7 ex6 \& $\S 14.8$ ex2) A rectangular box without a lid is to be made from 12 square meters of cardboard.
4. Consider $f(x, y)$ whose contour map is shown on the right.
(a) [2] (WrittenHW14.2\#46) Is $f(x, y)$ a function? Explain your reasoning.
(b) [2] (OptimizingActivity\#1) Identify $(-1,0)$ as a local minimum, maximum, or saddle.
(c) [2] (WebHW14.7\#2) Use the contour map to predict two extreme points for z (either local minimums or maximums).

(d) [2] (Quiz5\#1) Determine if $f_{x}(0,0)$ is positive, zero, or negative. Explain your reasoning.
(e) [3] (Quiz6\#1) Sketch the direction of the gradient vector $\nabla f\left(0, \frac{1}{2}\right)$
(f) [3] (IntegratingActivity\#1)) Estimate the signed volume trapped by $f(x, y)$, the $x y$ plane, and above the rectangle bounded by $-1 \leq x \leq 0$ and $0 \leq y \leq 1$. Be clear with your choices so I can follow your work!
5. A function $f(x, y)$ of two variables is known to be continuous and has the values specified to the right.

$y \backslash x$	1.0	1.1	1.2
2.0	5	7	10
2.2	4	6	8
2.4	3	5	6

(a) [1] What is $f(1.1,2.4)$?
(b) [4] (PracticeExam2\#3) Your boss would like you to develop a linear model that could be used to estimate the value of $f(1.4,2.3)$. Build the model and justify the choices/steps that you make.
6. (WebHW15.2\#5) Consider the volume trapped above the region shaded on the right.
(a) [3] (WebHW14.4\#3) The height function, h, is unknown. Use the fact that we know $h(-1,0)=1, h_{x}(-1,0) \approx \frac{1}{2}$, and $h_{y}(-1,0) \approx 1$ to find a linear approximation for h.

(b) [4] Find an iterated integral of our linear approximation to estimate the volume. (That is, write down the expression so that technology can finish the computations.)

