As a reminder, you are welcome to use a two-sided 3.5 " by 5 " index card with notes (written or typed), a non-internet accessing calculator (which includes Desmos Test Mode) but no books, other notes, or peers.

1. [6] TRUE/FALSE: Write True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, write False and provide a counterexample or brief justification.
(a) (WebHW12.4\#2) If \vec{v} and \vec{w} are vectors in \mathbb{R}^{3} so that $\vec{v} \times \vec{w}=0$ (that is, the cross product of vectors v and w), then \vec{v} is perpendicular to \vec{w}.
(b) (§13.2\#26) If $\vec{r}(t)=\left\langle t^{2}, \ln (e t), t^{3}-3 t\right\rangle$, then the line tangent to $\vec{r}(1)$ is:

$$
\langle x, y, z\rangle=\langle 1,1,-2\rangle+\left\langle 2 t, \frac{e}{t}, 3 t^{2}-3\right\rangle
$$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Consider the points $P(1,2,3)$ and $Q(-2,3,0)$.

Let $\vec{v}=\langle 0,-2,1\rangle$.
(a) [2] (Quiz2\#2) Label the x, y, and z axis and then plot the vector $\overrightarrow{P Q}$
(b) [1] (PracticeExam1\#2) Find the components of $\overrightarrow{P Q}$.
(c) [1] (DotActivity\#2)

Find a vector parallel to $\overrightarrow{P Q}$.
(d) [3] (WebHW12.3\#6) Find the angle $\overrightarrow{P Q}$ makes with \vec{v}.
(e) [3] (WebHW12.5 \#4) Find an equation of a plane passing through $(0,-2,1)$ and normal/orthogonal/perpendicular to \vec{v}
3. A plane's position is traced by a parameterized curve: $x_{p}(t)=t^{2}-9$ and $y_{p}(t)=2-t$ (in meters). Similarly, parameterized curves for a helicopter's position is $x_{h}(t)=6 \cos (t)$ and $y_{h}(t)=6 \sin (t)$ (in meters). The helicopter's path is traced below for $t=0$ to 10 .
(a) [1] (WebHw13.1\#1) As t increases, indicate the direction of the helicopter's path by adding an arrow to the path graphed.
(b) [2] (ParametricActivity\#1) Sketch the path of the plane from $t=0$ to $t=8$.
(c) [4] (WrittenHW10.2 \#56)

Set up the expression that will return the distance traveled by the helicopter between $(6,0)$ and $(5.6568,-2)$.

Make sure your answer can be completed with technology, you do not need to find the numeric answer!
(d) [3] (WordProblem \#7) Find the coordinates of any points where the two paths intersect.
(e) [2] (WordProblem \#7) Does the plane ever collide with the helicopter? Provide justification for your answer.
4. Consider the parametric curve $x=f(t), y=g(t)$ where $-1 \leq t \leq 1$, graphed below for the following questions.
(a) [1] Identify/Estimate the point on the parametric curve when $t=-0.25$.
(b) [1] Identify/Estimate a point on the plane that the path passes through more than once.

(c) [6] (WrittenHW§10.1\#32) Sketch the equations $x=f(t)$ and $y=g(t)$ on the pair of axis below.

(d) [4] (WebHW10.2\#3) Given the following information, find the line tangent to the curve $x=f(t), y=g(t)$ when $t=\frac{1}{2}$. Use whatever form of a line you like (eg. parametric, slope-intercept, standard, etc)

$$
f\left(\frac{1}{2}\right)=0 \quad g\left(\frac{1}{2}\right)=.23 \quad \frac{d f}{d t}\left(\frac{1}{2}\right)=2 \quad \frac{d g}{d t}\left(\frac{1}{2}\right)=-3.68
$$

