TMATH 126: Quiz 3

You may use:

- any kind of calculator that cannot access the internet and
- a double-sided 3×5 " card for this quiz.

Show all your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always true and provide a brief justification. Otherwise, circle F and provide a counterexample.
$\mathrm{T} \quad \mathrm{F}$ If \vec{a} and \vec{b} are vectors, then \vec{a} is parallel to \vec{b} if and only if $\vec{a} \cdot \vec{b}=1$.
$\mathrm{T} \quad \mathrm{F}$ The vector $\langle 0,-1,3\rangle$ is equivalent to $\overrightarrow{A B}$ where $A=(2,4,0)$ and $B=(2,3,3)$.
2. [1] Find the length of the vector \vec{i}
3. [3] ($\S 12.1 \# 27 \& \S 12.3)$ Describe in words the region of \mathbb{R}^{3} represented by the inequality. (Optionally, you can try to draw it.)
All (x, y, z) such that $\langle x, y, z\rangle \cdot\langle 1,0,0\rangle=0$.
4. Let $P=(0,2,-1), Q=(1,2,3)$ and $R=(0,0,0)$.
(a) [2] (Vector Wks \#2) Label your positve x, y, and z axis and plot P, Q and R.

(b) [4] (WebHW8 \#6) Find the angle of $\angle P Q R$
(c) [4] (WebHW8 \#14) Find a nonzero vector orthogonal (perpendicular) to the plane passing through P, Q, and R.
