Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. [12] TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.
Let \vec{u}, \vec{v}, and \vec{w} be vectors in \mathbb{R}^{3}.
Recall that • refers to the dot product, and \times refers to the cross product.
(a) If $\vec{u} \cdot \vec{v}=0$, then $\vec{u}=\overrightarrow{0}$ or $\vec{v}=\overrightarrow{0}$.
(b) $(\vec{u} \times \vec{w}) \cdot \vec{w}=0$
(c) $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{\vec{u}}{\|\vec{u}\|} \cdot \frac{\vec{v}}{\|\vec{v}\|}$.
(d) The line $(2+3 t,-4 t, 5+t)$ where $t \in \mathbb{R}$ intersects the plane $4 x+5 y-2 z=18$ at the point $(-4,8,3)$.
(e) Consider the function g pictured to the right. $g_{x}\left(x_{0}, y_{0}\right)>0$.

(f) $\underset{\overrightarrow{0}}{\text { If }} f$ has a local minimum at (a, b) and f is differentiable at (a, b), then $\nabla f(a, b)=$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Consider the points: $P(1,3,2), Q(3,-1,6)$, and $R(5,2,0)$. Also let $S(3,6,1.5)$ and $T(-9,-14,-12.5)$.
(a) Plot the points P, Q, and R.
(b) Find the components of the vector $\overrightarrow{P R}$.
(c) Find the length of $\overrightarrow{P R}$.
(d) Draw the vector $\overrightarrow{P R}-2 \vec{j}$ and then write its components.
(e) Use calculus methods to determine if $\triangle P Q R$ is a right triangle or not.

(f) Find the equation of the plane that passes through P, R, and Q.
(g) Does the line that passes through S and T intersect the plane you found in part (a)? Justify yourself.
3. [3] Consider the equation $2 z=\frac{x^{2}}{2}-2 y^{2}$.
(a) Does the above equation describe a function of x and y ? Why or why not?
(b) Describe the contour curves of the graph of the equation above. That is, describe the intersection of the graph of the above equation with the planes $z=k$ where k is some constant.
(c) Describe the intersection of the graph of $2 z=\frac{x^{2}}{2}-2 y^{2}$ with planes parallel to the $x z$ axis. That is, when $y=k$ for some constant k.
(d) Which (if any) of the following is a graph of the above function?

4. Consider the vector \vec{v} and \vec{u} shown to the right.
(a) Draw the vector $-3 \vec{v}$.
(b) Draw the vector $2 \vec{v}-\vec{u}$.
(c) Find the projection of \vec{u} onto \vec{v}.

5. Consider the function
$f(x, y)=-\sin (x+2 y)$ for the following questions.
(a) Find the gradient of f.
(b) Evaluate the gradient at the point $(0,0)$.

(c) Interpret your answer in (b) graphically and consider referencing the graph of f shown to the right.
(d) [3] Find the linear approximation of f at the point $(0,0)$.
6. Use Calculus methods to to find the (x, y, z) coordinates in \mathbb{R}^{3} to find and classify the critical points of the function

$$
f(x, y)=10 x^{2} y-5 x^{2}-4 y^{2}-x^{4}-2 y^{4} .
$$

Do this problem without relying on the graph!!!

