Exam 1

Tmath 126

Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.
(a) If there exists some number M such that $a_{n} \leq M$ for all n, then $\left\{a_{n}\right\}$ converges.
(b) Every point on the complex plane has a set of polar coordinates which are unique.
(c) If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(d) The Taylor series is an example of a power series.
(e) Given a function f, the associated taylor series T has the property that $f(x)=T(x)$ for all x.
(f) The dotted function below is the $4^{\text {th }}$ Taylor polynomial of $\sin (x)$ centered at 0 .

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Write the following sum in expanded form and simplify: $\sum_{n=1}^{4} \frac{\sqrt{2 n+1}}{n!}$
3. Write the following sum using the sigma notation: $1-\frac{2}{3}+\frac{3}{9}-\frac{4}{27}+\frac{5}{81}$
4. Compute the following if possible.
$\lim _{n \rightarrow \infty} \frac{10^{n+1}}{9^{n}}$
$\sum_{n=1}^{\infty} \frac{(2 e)^{n}}{6^{n-1}}$
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \quad \sum_{n=1}^{\infty} \frac{2}{n}$
5. Let $p(x)=0.04 * x^{4}+0.124 * x^{3}-0.3464 * x^{2}-1.09056 * x-0.678528$ whose graph is shown to the right.
(a) If you wanted to use Newton's method to find the positive root of the function p, what would your first guess be $\left(x_{1}\right)$?
(b) Using x_{1} you choose in part (a), use Newton's method to find x_{2}.

(c) Identify the basins of convergence with Newton's method on the graph.
(d) Find the second order Taylor polynomial $T_{2}(x)$ based at $b=1$.
(e) Bound the error $\left|p(x)-T_{2}(x)\right|$ on the interval $[0.5,1.5]$.
6. Consider the point $Q=e^{\frac{i 13 \pi}{3}}$
(a) Simplify Q so that the angle is between 0 and 2π and then plot Q on the axis provided.
(b) Write Q with rectangular coordinants.

(c) Find $Q^{6}-1$.
(d) Find two solutions of $x^{6}=1$.
(e) ExtraCredit: The Fundamental Theorem of Algebra implies there are six solutions of $x^{6}=1$. Find the other 4 .
7. Find the Taylor series expansion for $\frac{x}{4+x}$ centered at 0 , and find out where it converges.
8. Consider the recursively defined sequence
$\left.\left\{a_{1}, \frac{1}{2}\left(a_{1}^{2}-1\right), \frac{1}{2}\left(\left(\frac{1}{2}\left(a_{1}^{2}-1\right)\right)^{2}-1\right), \frac{1}{2}\left(\frac{1}{2}\left(\left(\frac{1}{2}\left(a_{1}^{2}-1\right)\right)^{2}-1\right)^{2}-1\right)\right), \ldots\right\}$.
(a) Identify the recursive function $R(x)$ so that $a_{n+1}=R\left(a_{n}\right)$.
(b) If $a_{1}=-2$, does the resulting sequence converge? If so, identify what it converges to (either find the number or identify it on a graph). Be sure to show your work.

				y_{4}^{5}					

(c) If $a_{1}=-3$, does the resulting sequence converge? If so, identify what it converges to (either find the number or identify it on a graph). Be sure to show your work.
(d) How many different limits can the sequence of a_{n} converge to? Justify yourself.
9. Use geometric series to show $0.99999 \ldots=1$.

