1. [12] TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.
(a) ($\S 11.1 \# 84$ Cobwebbing) Let a_{n} be a recursively defined sequence where $a_{1}=4$, $a_{n}=f\left(a_{n-1}\right)$, and f is a continuous function. If $\lim _{n \rightarrow \infty} a_{n}=6$, then $f(6)=6$.
(b) (PracticeExam \#1) Given a function f, the associated taylor series T has the property that $f(x)=T(x)$ for all x.
(c) $(\operatorname{pg} 778 \# 1)$ If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(d) (Lecture 7/8) The first degree Taylor polynomial of a function f centered at 2 is the same as the line tangent to f when $\mathrm{x}=2$.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Consider the series: $\frac{1}{1}+\frac{-1}{1}+\frac{1}{2}+\frac{-1}{6}+\frac{1}{24}+\frac{-1}{120}+\ldots$
(a) [3] (WebHW5 \#1) Write the series using sigma notation:
(b) [3] (PracticeExam \#4) Determine what the series above converges to, if it converges. Justify your work.
3. Compute the following if possible.
(a) $[4](\S 11.1 \# 30) \lim _{n \rightarrow \infty} a_{n}$ where $a_{n}=\sqrt{\frac{n+2}{25 n-1}}$
(b) [4] (WebHW4 \#4) The series $\sum_{n=0}^{\infty} a_{n}$ where $a_{n}=6(0.1)^{n}$
4. (PracticeExam \#5)

Let $p(x)=x^{3}-\frac{21}{8} x^{2}+\frac{21}{4} x-\frac{5}{2}$
whose graph is shown to the right.
(a) (Quiz2 \#2) [3] Will Newton's method always be able to find a root of this polynomial p no mater the starting value? Justify your answer.

(b) (WebHW3 \#1) [2] Choose an x_{1} value, and identify x_{2} using Newton's method (either numerically or graphically).
(c) [1] The complex number $R=1-(\sqrt{3}) i$ is a root of p. Plot R on the complex axis.
(d) $[2](\mathrm{ApxH} \# 26)$ Convert R into polar coordinates.
(e) (PracticeExam \#6) [2] Compute $R^{3}-8$.

5. Consider the function $f(x)=-3 \cos \left(x^{2}\right)$
(a) $[4](\S 11.10 \# 39)$ Find a power series representation for f. Any power series will suffice but supply work so I can see which one you are working with.
(b) [2] For what x values will the power series of x converge to $f(x)$?
(c) [4] Find a reasonable bound for the error of the second Taylor polynomial approximation centered at 0 for $f(3.5)$. Make sure that you show enough work that I know why you choose the M that you did.
(d) [4] Identify a topic we covered in this class that wasn't on the exam. Create an exam question about this topic and answer it.

