TMATH 126: Quiz 3

You may use:

- any kind of calculator that cannot access the internet and
- a double-sided 3×5 " card for this quiz.

Show *all* your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

- 1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, circle F and provide a counterexample.
 - T F If \overrightarrow{a} and \overrightarrow{b} are vectors, then \overrightarrow{a} is parallel to \overrightarrow{b} if and only if $\overrightarrow{a} \cdot \overrightarrow{b} = 1$.

T F The volume of a parallelepiped with edges \overline{PQ} , \overline{PR} and \overline{PS} can be found by computing $(\overrightarrow{PQ} \cdot \overrightarrow{PR}) \times \overrightarrow{PS}$.

2. [3] (§12.1 #36) Write the equation(s) for the three dimensional figure (and its contour lines) shown below.

- 3. Let $\overrightarrow{v} = \langle 2, -1 \rangle$ and $\overrightarrow{w} = \langle 4, 3 \rangle$.
 - (a) [2] (WebHW7 #12) Draw and then find the components of $2\vec{w} - \vec{v}$.

				v ^{5↑}					
				^y 4					
				3					
				2					
				1					
-4	-3	-2	-1	0	1	2	3	4	v
				-1					-1
				-2					
				-3			10		
				-4					

(b) [2] (§12.1 #8) Find $||2\overrightarrow{w} - \overrightarrow{v}||$ and explain what you found in terms a 7th grader would understand.

(c) [3] (WebHW7 #15) Find a vector parallel to \vec{w} but with length 2.

4. [4] (WebHW8 #14) Find the are of the triangle with vertices P, Q, and R where P(0, -2, 0), Q(5, 1, -2), and R(6, 4, 1).