§14.4 Tangent Lines & Planes

describe a line in \mathbb{R}^2 :

$$y = mx + b$$
 $ax + by = c$
 $y - y_1 = m(x - x_1).$

Consider an example of my favorite type of differential calculus question:

1. Find the line tangent to the graph of $f(x) = 2x^2$ when x=1.

Recall any of the following could be used to Recall any of the following could be used to describe a plane in \mathbb{R}^3 :

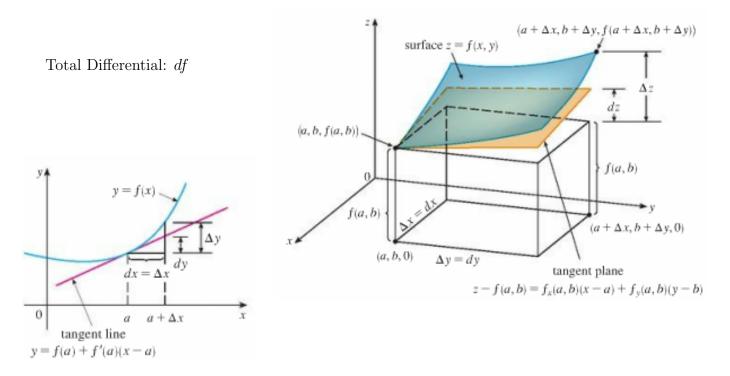
$$\overrightarrow{n} \cdot (\langle x, y \rangle - \langle x_1, y_1 \rangle \quad ax + by + cz = d$$

 $z - z_1 = m_x(x - x_1) + m_y(y - y_1).$

1. Find the plane tangent to the graph of $f(x,y) = 2x^2 + y^2$ when x = 1 and y = 1.

- 2. Find the local linearization of f when x = 1.
- 3. Use the linearization of f at (1,2) to approximate f(1.1).
- 4. How good is the approximation above? That is, what is the difference between your approximation above, and the actual value f(1.1).

- 2. Find the local linearization of f when x = 1 and y = 1.
- 3. Use the linearization of f at (1, 1, 3) to approximate f(1.1, 1.1).
- 4. How good is the approximation above? That is, what is the difference between your approximation above, and the actual value f(1.1, 1.1).



§14.6 Directional Derivatives

1. Let $f(x, y) = x + e^{y}$.

(a) Find ∇f

(b) Find $D_{\overrightarrow{u}}f(1,1)$ where $\overrightarrow{u} = \langle 1, -1 \rangle$.

(c) Find $D_{\overrightarrow{u}}f(1,1)$ where $\overrightarrow{u} = \overrightarrow{i} + 2\overrightarrow{j}$.