Integration over general regions

Double Riemann Sum If $f(x, y) \geq 0$ the double Riemann sum approximates the volume under the surface.

$$
V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \underbrace{\Delta x \Delta y}_{\Delta A} \quad \iint_{R} f(x, y) d A=\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A
$$

If the region R was the rectangle $[a, b] \times[c, d]$, then we could use the iterated integral:

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

To calculate the area of the vertical slice, $A(x)$:

$$
A(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y
$$

Then sum the vertical slices as x goes from a to b :

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

To calculate the area of the vertical slice, $A(y)$:

$$
A(y)=\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x
$$

Then sum the vertical slices as y goes from c to d :

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d x d y
$$

Example: For each of the (familiar) regions sketched below, create a double integral to calculate the signed volume of the 3-dimensional solid region over the region R in the $x y$ plane and the surface $f(x, y)=y x$.

