Exam 2 Tmath 126

Summer 2011

1. [12] TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.

Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be vectors in \mathbb{R}^3 . Recall that \cdot refers to the dot product, and \times refers to the cross product.

(a) $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$.

(b)
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} = 0.$$

(c) Two lines parallel to a plane are parallel.

(d) If f(x, y) is a continuous function, the first-order derivatives exist, and $f_x(0, 0) = 0 = f_y(0, 0)$, then f has a local minimum or maximum at the point (0, 0).

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

2. The vector $\overrightarrow{u} \in \mathbb{R}^2$ and shown below, answer the following:

- (e) [2] Find the angle between \overrightarrow{u} and \overrightarrow{v} .
- (f) [4] Find the projection of \overrightarrow{v} onto \overrightarrow{u} .

3. Find the equation of the plane that passes through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0).

- 4. Consider the three graphs above for the following questions:
 - (a) [3] Match the following equations to their respective graphs: A. $z = x^2 - y^2$ B. $y = x^2 - z^2$ C. $z = \ln(9 - x^2 - 9y^2)$
 - (b) [1] Identify which of the above are graphs of functions.
 - (c) [2] For each of the expressions above that are functions, identify the domain and the range.

5. Three views of the function $f(x, y) = x + \cos(3x)\sin(y)$ are shown below and may be used for the following questions. The point $\left(0, \frac{\pi}{2}, f\left(0, \frac{\pi}{2}\right)\right)$ is identified on the graph.

(a) [3] Find the gradient of f .

- (b) [1] Evaluate the gradient at the point $(0, \frac{\pi}{2})$.
- (c) [1] Interpret your answer in (b) graphically and consider referencing the graph of f shown to the right.

(d) [3] Find the linear approximation of f at the point $(0, \frac{\pi}{2})$.

- 6. [3] Consider the graph of f shown to the right with the point $f(\frac{1}{3}, 1)$ identified.
 - (a) Determine if $f_x(\frac{1}{3}, 1)$ is positive or negative.
 - (b) Determine if $f_y(\frac{1}{3}, 1)$ is positive or negative.
 - (c) Explain how you know.

7. [7] Consider the function $g(x, y) = 3(x^2 + y^2)e^{y^2 - x^2} - 2$. Three views of the function g are shown below. Identify all critical points and then classify them as local minimums, local maximums, or saddle points.

