Dot Products

1. For each pair of \vec{v} and \vec{w}, determine if the two vectors are parallel, perpendicular, or neither.

- $\vec{v}=\langle 2,2,-1\rangle$ and $\vec{w}=\langle 5,-4,2\rangle$
- $\vec{v}=\left\langle 3,7,-\frac{1}{2}\right\rangle$ and $\vec{w}=\left\langle-1,-\frac{7}{3}, \frac{1}{6}\right\rangle$

2. Consider the projection $\overrightarrow{P R}$ onto $\overrightarrow{P Q}$ shown to the right as $\overrightarrow{P S}$. If you had the components (or appropriate coordinates), outline a method for finding the components of the vector $\overrightarrow{P S}$.

Dots \& Crosses...

1. Verify that the vector $\langle 1,-1,-1\rangle$ is perpendicular to the vector $\langle 1,-1,-1\rangle \times\left\langle\frac{1}{2}, 1, \frac{1}{2}\right\rangle$.
2. Find a unit vector orthogonal to both $\vec{i}+\vec{j}+\vec{k}$ and $2 \vec{i}+\vec{k}$.
3. Find the area of the triangle $P Q R$ if $P(0,-2,0, Q(4,1,-2)$, and $R(5,3,1)$.
