Cobwebbing Sequences Adapted from homework created by Jonny Comes.

Suppose $a_n = f(a_{n-1})$ for all integers n > 0. Use cobwebbing techniques to investigate the sequence $\{a_n\}_{n=1}^{\infty}$.

- (a) Write down the sequence if $a_1 = 1$.
- (b) If $a_1 = 1$, does the sequence converge? If so, what to?
- (c) Write down the sequence if $a_1 = -1$.
- (d) If $a_1 = -1$, does the sequence converge? If so, what to?
- (e) For which values of a_1 is the sequence $\{a_n\}$ converging?
- (f) For each value of a_1 that makes the sequence $\{a_n\}$ converge, state the limit.

2. Pictured below are the graphs of $y = \sin(x) + x$ and y = x.

Suppose $a_n = \sin(a_{n-1}) + a_{n-1}$ for all integers n > 0.

- (a) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 0?
- (b) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to π ?
- (c) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 2π ?
- (d) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 3π ?

- 3. Suppose r is a real number and $a_n = ra_{n-1}$ for all integers n > 0.
 - (a) Consider the special case when r = 0. Let $a_1 = 0$ and write down a few terms of the sequence $\{a_n\}_{n=1}^{\infty}$ and determine if the sequence converges.
 - (b) Consider a second special case when r = 1. Let $a_1 = 1$ and write down a few terms of the sequence $\{a_n\}_{n=1}^{\infty}$ and determine if the sequence converges.
 - (c) Assume r = 2. What functions should you plot to make use of cobwebbing? Use cobwebbing to find all values of a_1 for which the sequence $\{a_n\}$ converges.
 - (d) Assume r > 1. What functions should you plot to make use of cobwebbing? Use cobwebbing to find all values of a_1 for which the sequence $\{a_n\}$ converges.
 - (e) Repeat part (d) for 0 < r < 1.
 - (f) Collect your results in parts (d) and (e) to finish the following sentence: Let $0 \le r$, then the sequence $a_n = r^n$ converges if
 - (g) Repeat part (d) for r = -1.