TMATH 126: Quiz 3

You may use:

- any kind of calculator that cannot access the internet and
- a one-sided 3×5 " card for this quiz.

Show all your supporting work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always true and provide a brief justification. Otherwise, circle F and provide a counterexample or brief justification.

T F Let \vec{u} be the vector shown on the contour graph to the right. Then $D_{\vec{u}} f(1,4)$ is zero.

T F (WebHW13 \#1) We have to use the product rule to find $\frac{\partial}{\partial x}(x \cos (x y))$
2. [4] (Suggested $\S 13.3 \# 29)$ Let $f(x, y)=x \cos (x y)$, find $\frac{\partial f}{\partial y}$.
3. [3] (3D Function Wks \#2) Match the function with it's level curves. Justify your answer.

$$
a(x, y)=5000-30 x^{2}-10 y^{2}
$$

4. Let $f(x, y)=\frac{x}{y}$.
(a) [3] (WebHW12 \#19) Use any method to find $\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}$.
(b) [4] (WrittenHW7 $\S 13.6 \# 1)$ Find $D_{\vec{u}} f(1,1)$ where $\vec{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.

