TMath 126

Practice

Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and will likely have a different layout.

Final

1. TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.

Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be vectors in \mathbb{R}^3 . Recall that \cdot refers to the dot product, and \times refers to the cross product.

(a) If
$$\lim_{n \to \infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges to a finite number.

- (b) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that the n^{th} partial sum of a series is $s_n = \frac{n+5n^2}{n^2-e}$. Then $\lim_{n\to\infty} a_n = 5$.
- (c) Newton's method will approach a root of a function, if it exists, no matter the initial guess.

(d)
$$||\overrightarrow{a} \times \overrightarrow{b}|| = ||\overrightarrow{b} \times \overrightarrow{a}||.$$

(e)
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} = 0.$$

(f) Let f be a function of x and y. If $\nabla f(c, d) = (2, 1)$, then the vector $\langle 2, 1 \rangle$ is tangent to the contour line of the surface of f at (c, d, f(c, d)).

(g)
$$\int_{-1}^{2} \int_{0}^{6} x^{2} \sin(x-y) \, dx \, dy = \int_{0}^{6} \int_{-1}^{2} x^{2} \sin(x-y) \, dy \, dx$$

(h)
$$\int_{-1}^{x} \int_{0}^{6} x^{2} \sin(x-y) \, dx \, dy = \int_{0}^{6} \int_{-1}^{x} x^{2} \sin(x-y) \, dy \, dx$$

2. Evaluate the following if possible.

$$\lim_{n \to \infty} a_n$$

where $a_1 = 0$ and $a_{n+1} = 2^{a_n} - 3$

$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$$

$$\lim_{n \to \infty} \sin\left(\frac{6n\pi}{5+8n}\right)$$

 $\sum_{n=0}^{\infty} \frac{n+1}{3n+2}$

3. The temperature of a microprocessor is taken every second and only the last three readings are recorded. Below is a chart of the temperature C (in Celsius) and time t from which we estimated the first and second derivatives of C at t = 3.

	2	3	4	n	0	1	
C(t)	46	48	52	$C^n(3) \approx$	48	4	

(a) Use all of the above data to estimate the values of C close to 3.

(b) Temperature changes rather slowly and experimentally we know $C^{(3)}(t)$ has the following graph. Provide an upper bound for the estimate of C(5) using part (a).

4. You are given the following data of a function g(x, y). Your boss wants you to approximate g(.8, 1.4) and wants to be convinced you're doing something sophisticated. Find a linear approximation for your boss and explain your choices (there are many that you will make!).

x	y	g(x,y)
0.55	1.2	27
0.65	1.0	31
0.65	1.1	29
0.75	1.2	50

- 5. Let Q be the plane containing the line $L(t) = \langle 2+t, 1-t, 1-t \rangle$ and the point (1,0,1). Let R be defined by x + 2y + 3z = 0
 - (a) Find an equation of a plane for Q.
 - (b) Find the distance between Q and the point (2,-1,3).

- (c) Identify if R is a point, line, plane, or none of the above.
- (d) Given that Q and R intersect and identify the intersection as a point, line, plane, or none of the above.
- (e) Find the angle that Q and R intersect.

- 6. Consider the vectors: $\overrightarrow{v} = \langle 1, 2, -2 \rangle$ and $\overrightarrow{w} = \langle 2, -1, -2 \rangle$
 - (a) Draw the vector $-\overrightarrow{v}$
 - (b) Draw the vector $\overrightarrow{w} \overrightarrow{v}$
 - (c) Draw the vector $\overrightarrow{v} \times \overrightarrow{w}$

(a) [3] Looking at the graph, approximate where $\frac{dy}{dx}$ is not defined.

- e
- (b) [4] Find the equation of one of the lines tangent to the above parametric equations at (0, 5).

8. Find the maximum and minimum volumes of a rectangular box with the constraints that the surface area is 1500cm^2 and total edge length is 200cm.

9. Common blood types are determined by three alleles, A, B, and O. If p is the percent of allele A in the population, q is the percent of allele b in the population and r is the percent of allele O in the population then the proportion of individuals with a mixed blood type (e.g. AB, AO or BO) is P(p, q, r) = 2pq + 2pr + 2qr. Find the maximal P value.

10. Consider the double integral

$$\int_0^1 \int_{\arcsin y}^{\frac{\pi}{2}} \cos(x)\sqrt{1+\cos^2 x} \, dx \, dy$$

(a) Sketch the region in the xy-plane where the integral is taken over.

(b) Switch the order of integration.

(c) Compute the double integral.