Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and will likely have a different layout.

1. TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.
Let \vec{a}, \vec{b}, and \vec{c} be vectors in \mathbb{R}^{3}.
Recall that • refers to the dot product, and \times refers to the cross product.
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges to a finite number.
(b) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence such that the $n^{\text {th }}$ partial sum of a series is $s_{n}=\frac{n+5 n^{2}}{n^{2}-e}$. Then $\lim _{n \rightarrow \infty} a_{n}=5$.
(c) Newton's method will approach a root of a function, if it exists, no matter the initial guess.
(d) $\|\vec{a} \times \vec{b}\|=\|\vec{b} \times \vec{a}\|$.
(e) $(\vec{a} \times \vec{b}) \cdot \vec{a}=0$.
(f) Let f be a function of x and y. If $\nabla f(c, d)=(2,1)$, then the vector $\langle 2,1\rangle$ is tangent to the contour line of the surface of f at $(c, d, f(c, d))$.
(g) $\int_{-1}^{2} \int_{0}^{6} x^{2} \sin (x-y) d x d y=\int_{0}^{6} \int_{-1}^{2} x^{2} \sin (x-y) d y d x$
(h) $\int_{-1}^{x} \int_{0}^{6} x^{2} \sin (x-y) d x d y=\int_{0}^{6} \int_{-1}^{x} x^{2} \sin (x-y) d y d x$
2. Evaluate the following if possible.

$$
\lim _{n \rightarrow \infty} a_{n}
$$

$$
\sum_{n=0}^{\infty} \frac{n+1}{3 n+2}
$$

where $a_{1}=0$ and $a_{n+1}=2^{a_{n}}-3$

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^{n}}
$$

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{6 n \pi}{5+8 n}\right)
$$

3. The temperature of a microprocessor is taken every second and only the last three readings are recorded. Below is a chart of the temperature C (in Celsius) and time t from which we estimated the first and second derivatives of C at $t=3$.

t	2	3	4
$C(t)$	46	48	52

n	0	1	2
$C^{n}(3) \approx$	48	4	3

(a) Use all of the above data to estimate the values of C close to 3 .
(b) Temperature changes rather slowly and experimentally we know $C^{(3)}(t)$ has the following graph.
Provide an upper bound for the estimate of $C(5)$ using part (a).

4. You are given the following data of a function $g(x, y)$. Your boss wants you to approximate $g(.8,1.4)$ and wants to be convinced you're doing something sophisticated. Find a linear approximation for your boss and explain your choices (there are many that you will make!).

x	y	$g(x, y)$
0.55	1.2	27
0.65	1.0	31
0.65	1.1	29
0.75	1.2	50

5. Let Q be the plane containing the line $L(t)=\langle 2+t, 1-t, 1-t\rangle$ and the point $(1,0,1)$. Let R be defined by $x+2 y+3 z=0$
(a) Find an equation of a plane for Q.
(b) Find the distance between Q and the point $(2,-1,3)$.
(c) Identify if R is a point, line, plane, or none of the above.
(d) Given that Q and R intersect and identify the intersection as a point, line, plane, or none of the above.
(e) Find the angle that Q and R intersect.
6. Consider the vectors: $\vec{v}=\langle 1,2,-2\rangle$ and $\vec{w}=\langle 2,-1,-2\rangle$
(a) Draw the vector $-\vec{v}$
(b) Draw the vector $\vec{w}-\vec{v}$
(c) Draw the vector $\vec{v} \times \vec{w}$

7. Consider the parametric equation $x(t)=t^{3}-5 t$ and $y(t)=t^{2}$.
(a) [3] Looking at the graph, approximate where $\frac{d y}{d x}$ is not defined.
(b) [4] Find the equation of one of the lines tangent to the
 above parametric equations at $(0,5)$.
8. Find the maximum and minimum volumes of a rectangular box with the constraints that the surface area is $1500 \mathrm{~cm}^{2}$ and total edge length is 200 cm .
9. Common blood types are determined by three alleles, A, B, and O. If p is the percent of allele A in the population, q is the percent of allele b in the population and r is the percent of allele O in the population then the proportion of individuals with a mixed blood type (e.g. $A B$, $A O$ or $B O)$ is $P(p, q, r)=2 p q+2 p r+2 q r$. Find the maximal P value.
10. Consider the double integral

$$
\int_{0}^{1} \int_{\arcsin y}^{\frac{\pi}{2}} \cos (x) \sqrt{1+\cos ^{2} x} d x d y
$$

(a) Sketch the region in the $x y$-plane where the integral is taken over.
(b) Switch the order of integration.
(c) Compute the double integral.

