§13.4 & 13.7 WrittenHW #8 TMath 126

- 1. Consider the volume of a right circular cylinder with radius y and height x.
 - (a) [1] Write volume z, as a function of x and y.
 - (b) [4] Find a linear approximation for the volume of a right circular cylinder when the radius is 2cm and the height is 3cm.
 - (c) [3] It is determined that the error involved in measuring each dimension is ± 0.05 cm. Use your linear approximation to provide a range of possible volumes.
- 2. Consider $z = 2xy^2$ and $8x^2 5y^2 8z = -13$.
 - (a) [1] Verify that the two curves intersect when x = y = 1.
 - (b) [3] Find the plane tangent to $z = 2xy^2$ when x = y = 1.
 - (c) [3] Determine if the two surfaces are tangent to each other at the above point or if they are perpendicular. Justify your conclusions mathematically.

13.8 WrittenHW #8 TMath 126

- 1. Determine (if possible) whether f(a, b) is a relative maximum, a relative minimum, a saddle point based on the following information. Justify your conclusions.
 - (a) [2] $f_x(a,b) = 0$, $f_y(a,b) = 0$, $f_{xx}(a,b) = 9$, $f_{yy}(a,b) = 4$, and $f_{xy}(a,b) = f_{yx}(a,b) = 6$.
 - (b) [2] $f_x(a,b) = 0$, $f_y(a,b) = 0$, $f_{xx}(a,b) = -5$, $f_{yy}(a,b) = 3$, and $f_{xy}(a,b) = f_{yx}(a,b) = 3$.
- 2. A company makes stationary at two locations. The cost of making x_1 units at location 1 is $C_1 = 0.02x_1^2 + 4x_1 + 500$ and the cost of producing x_2 units at the second location is $C_2 = 0.05x_2^2 + 4x_2 + 275$. The stationary is sold for \$15 per unit.
 - (a) [2] Find a function that returns the profit for the company.
 - (b) [3] Find the quantity that should be produced at each location to maximize the profit.
- 3. The Shannon diversity index S is a way to measure species diversity. If a habitat has three species A, B, and C, then its Shannon diversity index is $S = -x \ln(x) y \ln(y) z \ln(z)$ where x is the percent of species A, y is the percent of species B, and z is the percent of species C is in the habitat.
 - (a) [2] Assume there are no other species in the habitat find an equation relating x, y, and z.
 - (b) [4] Show the maximum value of S occurs when $x = y = z = \frac{1}{3}$.