1. Consider the volume of a right circular cylinder with radius $y$ and height $x$.
(a) [1] Write volume $z$, as a function of $x$ and $y$.
(b) [4] Find a linear approximation for the volume of a right circular cylinder when the radius is 2 cm and the height is 3 cm .
(c) [3] It is determined that the error involved in measuring each dimension is $\pm 0.05 \mathrm{~cm}$. Use your linear approximation to provide a range of possible volumes.
2. Consider $z=2 x y^{2}$ and $8 x^{2}-5 y^{2}-8 z=-13$.
(a) [1] Verify that the two curves intersect when $x=y=1$.
(b) [3] Find the plane tangent to $z=2 x y^{2}$ when $x=y=1$.
(c) [3] Determine if the two surfaces are tangent to each other at the above point or if they are perpendicular. Justify your conclusions mathematically.
3. Determine (if possible) whether $f(a, b)$ is a relative maximum, a relative minimum, a saddle point based on the following information. Justify your conclusions.
(a) $[2] f_{x}(a, b)=0, f_{y}(a, b)=0, f_{x x}(a, b)=9, f_{y y}(a, b)=4$, and $f_{x y}(a, b)=f_{y x}(a, b)=6$.
(b) [2] $f_{x}(a, b)=0, f_{y}(a, b)=0, f_{x x}(a, b)=-5, f_{y y}(a, b)=3$, and $f_{x y}(a, b)=f_{y x}(a, b)=3$.
4. A company makes stationary at two locations. The cost of making $x_{1}$ units at location 1 is $C_{1}=0.02 x_{1}^{2}+4 x_{1}+500$ and the cost of producing $x_{2}$ units at the second location is $C_{2}=0.05 x_{2}^{2}+4 x_{2}+275$. The stationary is sold for $\$ 15$ per unit.
(a) [2] Find a function that returns the profit for the company.
(b) [3] Find the quantity that should be produced at each location to maximize the profit.
5. The Shannon diversity index $S$ is a way to measure species diversity. If a habitat has three species $A, B$, and $C$, then its Shannon diversity index is $S=-x \ln (x)-y \ln (y)-$ $z \ln (z)$ where $x$ is the percent of species $A, y$ is the percent of species $B$, and $z$ is the percent of species $C$ is in the habitat.
(a) [2] Assume there are no other species in the habitat find an equation relating $x$, $y$, and $z$.
(b) [4] Show the maximum value of $S$ occurs when $x=y=z=\frac{1}{3}$.
