1. Let $f(x, y)=\int_{x}^{y} \frac{1}{t} d t$. Show your work for each of the following:
(a) [2] If possible find $f\left(e^{2}, e\right)$.
(b) [1] If possible find $f(-1,1)$.
(c) [2] Find the domain of f.
2. The length of time that one waits in line, on average is $W(x, y)=\frac{1}{x-y}$, where y is the average arrival rate (with units of customers per unit of time) and x is the average service rate (with units of customers per unit of time).
(a) [2] Find the domain of W.
(b) [2] Evaluate $W(12,7)$ and explain its meaning.
(c) [2]Find $\lim _{(x, y) \rightarrow(1,0)} W(x, y)$ and explain its meaning.
3. [4] Create a function $f(x, y)$ with the following properties:
(a) continuous at $(0,0)$
(b) $\lim _{(x, y) \rightarrow(3,0)} f(x, y)=\infty$
(c) $f(3,0)=-1$
4. Let $f(x, y)=y^{2} \log _{2}(x)$
(a) [2] Find ∇f.
(b) [4] Find $f_{x x}, \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right), z_{y x}$, and $\frac{\partial^{2} f}{\partial y^{2}}$
(c) [4] Find the derivative of f in the direction $\overrightarrow{P Q}$ where $P(1,2)$ and $Q(4,3)$.
5. A company makes a freestanding wood-burning stove and a fireplace-insert model. The cost function for producing x freestanding and y fireplace-insert stoves is

$$
C=32 \sqrt{x y}+175 x+205 y+1050 .
$$

(a) [3] Find the marginal costs with respect to x and with respect to y when $x=80$ and $y=20$.
(b) [2] When additional production is needed, which model of stove would be more cost effective to produce (i.e. keep costs lower)? Explain your reasoning.

