WrittenHW \#2

TMath 126

1. Let f be a function with the following properties. Provide explanations for all of your computations!

- $f(16)=4$
- $f^{\prime}(16)=\frac{1}{8}$
- $f^{\prime \prime}(16)=\frac{-1}{2^{2} \cdot 4^{3}}$
- $f^{(3)}(16)=\frac{3}{2^{3} \cdot 4^{5}}$
- $f^{(4)}(x)=\frac{-15}{2^{4}} x^{-\frac{7}{2}}$
(a) [4] Use the data above to find the 3rd degree Taylor approximation of f.
(b) [1] Approximate $f(16.5)$

2. Consider $f(x)=x^{2} \cos (x)$.
(a) [4] Find the 2nd Taylor Polynomial centered at π of f.
(b) [1] Approximate $f\left(\frac{7 \pi}{8}\right)$.
3. [5] A bottle rocket fired from the ground with initial speed v_{0}, follows the trajectory given by

$$
y=\left(\tan (\theta)-\frac{g}{k v_{0} \cos (\theta)}\right) x-\frac{g}{k^{2}} \ln \left(1-\frac{k x}{v_{0} \cos (\theta)}\right)
$$

where θ is the angle of projection, g is due to gravity, and k is the drag factor caused by air resistance. Computing this can take time/drain resources and generally only a quadratic approximation is needed (even for actual rockets!). Use the Taylor series for $\ln (1+x)$ centered at 0 in the above and simplify terms until you have a quadratic in x.

1. Consider again, a function f with the following properties. Provide explanations for all of your computations!

- $f(16)=4$
- $f^{\prime}(16)=\frac{1}{8}$
- $f^{\prime \prime}(16)=\frac{-1}{2^{2} \cdot 4^{3}}$
- $f^{(3)}(16)=\frac{3}{2^{3} \cdot 4^{5}}$
- $f^{(4)}(x)=\frac{-15}{2^{4}} x^{-\frac{7}{2}}$
(a) [2] Give an upper bound to the error when you computed $f(16.5)$.
(b) [3] Find an upper bound to the error between $f(x)$ and the appropriate 3rd degree Taylor approximation when x is between 1 and 17 .

2. [5] Find the degree of the Taylor Approximation needed so that the error in the approximation of $\ln (1.25)$ is less than .001 . Be clear about what function you are using to build your Taylor Approximation!
3. [5] Show that the Taylor series centered at 0 converges to the function $f(x)=\sin (x)$ for all x. Careful, this is an argument, not a computation that you need to give!
