1. [4] Find the limit of each sequence, if possible. Provide justification.
(a) $a_{n}=\frac{n^{8}}{e^{n}}$
(b) $\left\{n \cos \left(\frac{1}{n}\right)\right\}$
2. [3] Write an expression for the nth term in the sequence whose first five terms are:

$$
\left\{-\frac{3}{4}, \frac{4}{5},-\frac{5}{6}, \frac{6}{7},-\frac{7}{8}, \ldots\right\}
$$

3. [3] Consider the recursively defined sequence where $a_{n}=\sin \left(a_{n-1}\right)+a_{n-1}$.
(a) Graph the recursive function needed to use cobwebbing.
(b) Use cobwebbing to determine all values of a_{1} such that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to π ?
4. [5] Write down the first three numbers in the sequence resulting from using Newton's method to estimate the root on the function $f(x)=x-e^{-x}$. Provide graphical or algebraic justification/work.
5. [6] Determine the convergence or divergence of the series. Clearly justify your answer!
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)$
(b) $\sum_{n=1}^{\infty} \ln \left(\frac{1}{n}\right)$
6. [4] Many jobs offer an automatic retirement plan that moves P dollars from your paycheck into a retirement account. If the deposits are made each month for t years, and the account earns interest at the annual percentage rate r, when compounded monthly, the amount A of money in the account at the end of t years is:

$$
A=P+P\left(1+\frac{r}{12}\right)+P\left(1+\frac{r}{12}\right)^{2}+P\left(1+\frac{r}{12}\right)^{3}+\ldots+P\left(1+\frac{r}{12}\right)^{12 t-1}
$$

Notice that this begins like a geometric series, so we can compute the entire infinite $\operatorname{sum}\left(\sum_{i=1}^{\infty} P\left(1+\frac{r}{12}\right)^{i}\right)$.
Notice also that the "missing infinite terms" make another geometric series and A is the difference of these. Use these observations to find a closed form for A (a way to compute A without adding up all of the terms listed above).
3. Consider the line segment $[0,1]$ (top line in the figure below). Let s_{1} be the center third of the line segment (the missing third in the second line in the figure below). Let s_{2} be s_{1} and the center thirds of the remaining two line segments (the missing sections in the third line in the figure below). Recursively add to s_{n} by taking the middle thirds of all remaining line segments.

(a) [3] Find $\lim _{n \rightarrow \infty} s_{n}$.
(b) [1] Define C as the complement of $\lim _{n \rightarrow \infty} s_{n}$. Given (a), what is the length of C ?
(c) [1] Identify two points in C. How many points are in C ?

