1. [12] TRUE/FALSE: Circle T in each of the following cases if the statement is always true and provide a brief justification. Otherwise, circle F and provide a counterexample or brief justification.
(a) The graph on the right has the parametric equation $x(t)=t-\sin (t)$ and $y(t)=1-\cos (t)$.

(b) If \vec{w} and \vec{v} are vectors, then $(\vec{v} \cdot \vec{w})+\vec{v}$ returns a vector.
(c) The planes defined by $3 x-y+2 z=6$ and $0=\langle 6,2,4\rangle \cdot((x, y, z)-(0,0,1))$ are parallel to each other.
(d) If $\vec{w}(t)$ and $\vec{v}(t)$ are vector-valued functions, then $\left(\vec{v}^{\prime}(3) \cdot \vec{w}^{\prime \prime}(3)\right)+\vec{v}(2)$ returns a vector valued function.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Consider the points $A(0,0,4), B(2,3,0)$ and $C(1,-2,1)$.
(a) [1] Find the components of $\overrightarrow{B A}$.
(b) [2] Find the components of $\overrightarrow{B A}+2 \vec{j}$

(c) [4] Find the angle $\angle A B C$.
3. Let $\vec{r}(t)=\left\langle t \sin t, 3 \sqrt{t}, e^{t}\right\rangle$
(a) [3] Find $\vec{r}^{\prime}(t)$.
(b) [3] Find $\int \vec{r}(t) d t$
4. Consider M defined by all (x, y, z) such that $3 x-2 y+2 z=6$.
(a) [2] Identify M as a point, vector, line, or plane. Justify your answer.
(b) [1] What kind of object results when M intersects the $y z$ plane?

(c) [2] Find where M intersects the $y z$ plane.
5. [5] Consider a . 28 meter wrench is turning a bolt shown below. If the force acting on the wrench is 92 Newton meters, what is the torque experienced by the bolt?

6. [3] Consider the parametric equations $x(t)=t-3$ and $y(t)=\frac{t}{t-3}$. Write the corresponding rectangular equation by eliminating the parameter and then graph the function.

7. Consider the parametric equation $x(t)=t^{3}-5 t$ and $y(t)=t^{2}$.
(a) [3] Looking at the graph, approximate where $\frac{d y}{d x}$ is not defined.
(b) [4] Find the equation of one of the lines tangent to the
 above parametric equations at $(0,5)$.

