TMath 126

Exam 2

1. [12] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, circle F and provide a counterexample or brief justification.

(b) If \overrightarrow{w} and \overrightarrow{v} are vectors, then $(\overrightarrow{v} \cdot \overrightarrow{w}) + \overrightarrow{v}$ returns a vector.

- (c) The planes defined by 3x-y+2z = 6 and $0 = \langle 6, 2, 4 \rangle \cdot ((x, y, z) (0, 0, 1))$ are parallel to each other.
- (d) If $\overrightarrow{w}(t)$ and $\overrightarrow{v}(t)$ are vector-valued functions, then $(\overrightarrow{v}'(3) \cdot \overrightarrow{w}''(3)) + \overrightarrow{v}(2)$ returns a vector valued function.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

- 2. Consider the points A(0, 0, 4), B(2, 3, 0)and C(1, -2, 1).
 - (a) [1] Find the components of \overrightarrow{BA} .
 - (b) [2] Find the components of $\overrightarrow{BA} + 2\overrightarrow{j}$

(c) [4] Find the angle $\angle ABC$.

3. Let $\overrightarrow{r}(t) = \langle t \sin t, 3\sqrt{t}, e^t \rangle$ (a) [3] Find $\overrightarrow{r}'(t)$.

(b) [3] Find
$$\int \overrightarrow{r}(t) dt$$

- 4. Consider M defined by all (x, y, z) such that 3x 2y + 2z = 6.
 - (a) [2] Identify M as a point, vector, line, or plane. Justify your answer.
 - (b) [1] What kind of object results when M intersects the yz plane?

(c) [2] Find where M intersects the yz plane.

5. [5] Consider a .28 meter wrench is turning a bolt shown below. If the force acting on the wrench is 92 Newton meters, what is the torque experienced by the bolt?

6. [3] Consider the parametric equations x(t) = t-3 and $y(t) = \frac{t}{t-3}$. Write the corresponding rectangular equation by eliminating the parameter and then graph the function.

				v ⁵					
				· 4					
				3					
				2					
		5		1			2		57
-4	-3	-2	-1	0	1	2	3	4	5
				-1					-1
				-2					
				-3					
				-4					
				-4					

- 7. Consider the parametric equation $x(t) = t^3 5t$ and $y(t) = t^2$.
 - (a) [3] Looking at the graph, approximate where $\frac{dy}{dx}$ is not defined.

(b) [4] Find the equation of oneof the lines tangent to the above parametric equations at (0, 5).