1. [12] TRUE/FALSE: Circle T in each of the following cases if the statement is always true and provide a brief justification. Otherwise, circle F and provide a counterexample or brief justification.
(a) (Suggested $\S 3.8 \# 23)$ ) Newton's method will find the root of $f$ (graphed on the right) with a sequence starting at $x=2$.

(b) (VectorWks \#2) The length of a vector $\vec{v}$ with components $\langle 1,3,-2\rangle$ is $\sqrt{2}$.
(c) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(d) The first degree Taylor polynomial of a function $f$ centered at 2 is the same as the line tangent to $f$ when $\mathrm{x}=2$.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Consider: $\left\{\frac{1}{1}, \frac{-1}{1}, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}, \ldots\right\}$
(a) [2] Identify the above as a series or a sequence. Explain why.
(b) [3] (SequenceWks \#1) Find a formula for the general $a_{n}$ term.
(c) [3] (Sumer14 Exam1 \#2) Determine if the above converges or diverges. Justify your work.
3. Compute the following if possible.
(a) [4] (WebHW3 \#7) $\sum_{n=1}^{\infty} \arctan (\pi n)$.
(b) [4] (HW1 $\S 9.2 \# 3$ ) The series $\frac{1}{3}+\sum_{n=1}^{\infty} \frac{1}{3}\left(\frac{2}{3}\right)^{n}$.
4. Let $\vec{v}$ and $\vec{w}$ be shown below.
(a) [2] (Suggested $\S 11.1 \# 1)$ Find the components of $\vec{v}$.
(b) [1] (Suggested §11.2 \#51) Identify the initial point of $\vec{v}$ shown to the right.

(c) [2] (VectorWks \#2) Sketch the vector $\vec{v}+\vec{w}$ on the graph above. Be sure to label which vector is $\vec{v}+\vec{w}$ !
5. (Quiz1 \#2) The graph of $R(x)$ and $y=x$ are both graphed to the right. Consider the recursively defined sequence where $a_{n}=R\left(a_{n-1}\right)$ and $a_{1}=-1.5$.
(a) [1] (SequenceWks \#1) Use the graph to estimate $a_{2}$.
(b) [2] (WrittenHW1§9.1 \#3) Use the graph to estimate $\lim _{n \rightarrow \infty} a_{n}$

6. The temperature of a microprocessor is taken every second and only the last three readings are recorded. Below is a chart of the temperature $C$ (in Celsius) and time $t$ from which we estimated the first and second derivatives of $C$ at $t=3$.

| $t$ | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| $C(t)$ | 46 | 48 | 52 |


| $n$ | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| $C^{n}(3) \approx$ | 48 | 4 | 3 |

(a) [5] (HW2 §9.7 \#1) Use all of the above data to estimate for $C(5)$.
(b) [3] (WebHW5 \#1) Temperature changes rather slowly and experimentally we know $C^{(3)}(t)$ has the following graph. Provide an upper bound for the error you found in part (a).


