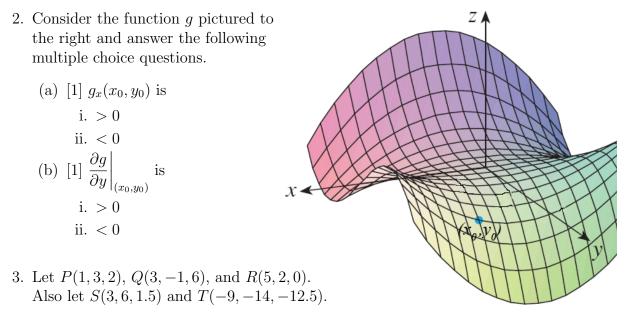
Exam 2 Tmath 126

Spring 2011

1. [12] TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.

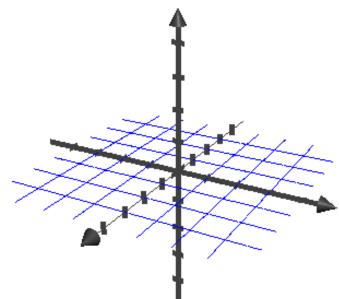
Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be vectors in \mathbb{R}^3 . Recall that \cdot refers to the dot product, and \times refers to the cross product.


(a) $(\overrightarrow{a} \cdot \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \cdot \overrightarrow{c}).$

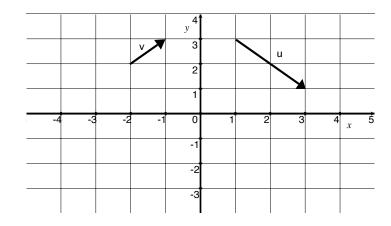
(b)
$$||\overrightarrow{a} \times \overrightarrow{b}|| = ||\overrightarrow{b} \times \overrightarrow{a}||.$$

(c) If f(x, y) is a continuous function, the first-order derivatives exist, and $f_x(0, 0) = 0 = f_y(0, 0)$, then f has a local minimum or maximum at the point (0, 0).

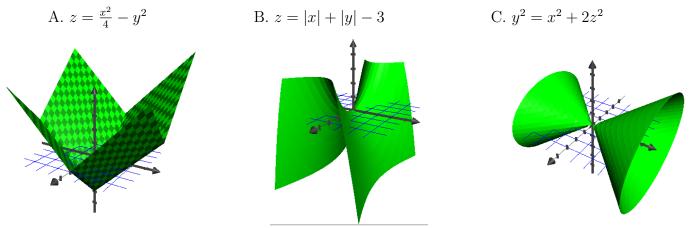
(d) If f(x, y) is a continuous function, the first-order derivatives exist, and f has a local minimum or maximum at the point (0, 0), then $f_x(0, 0) = 0 = f_y(0, 0)$.


Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

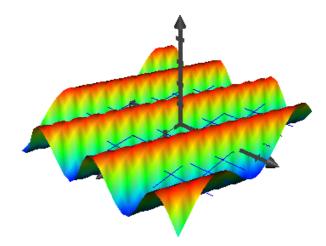
(a) [3] Find the equation of the line that passes through P, R, and Q.


(b) [2] Does the line that passes through S and T intersect the plane you found in part (a)? Justify your answer.

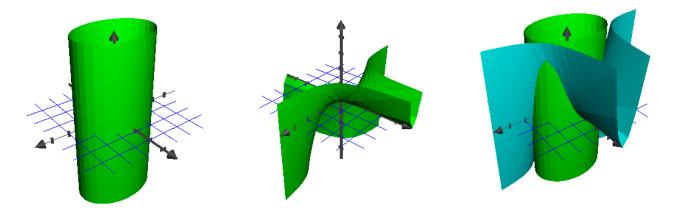
- 4. Consider the points: P(1, -3, -2), Q(2, 0, -4), and R(6, -2, -5).
 - (a) [2] Plot the points P, Q, and R.
 - (b) [3] Find the length of \overrightarrow{PR}



(c) [4] Use calculus methods to determine of $\triangle PQR$ is a right triangle or not.


- 5. Consider the vector \overrightarrow{v} and \overrightarrow{u} shown to the right.
 - (a) [1] Draw the vector $2\overrightarrow{u}$.
 - (b) [1] Draw the vector $-3\overrightarrow{v}$.
 - (c) [2] Draw the vector $2\overrightarrow{v} \overrightarrow{u}$.

6. [3] Match the following equations to their respective graphs:


- 7. Consider the function $f(x, y) = -\sin(x + 2y)$ for the following questions.
 - (a) [3] Find the gradient of f .

- (b) [1] Evaluate the gradient at the point (0,0).
- (c) [2] Interpret your answer in (b) graphically and consider referencing the graph of f shown to the right.

(d) [3] Find the linear approximation of f at the point (0,0).

8. Both the cylinder described by $6 = x^2 + 2y^2$ and the surface described by $z = x^2y$, along with their intersections are shown below.

(a) [6] Use Calculus methods to to find the (x, y, z) coordinates in \mathbb{R}^3 to find the points on both surfaces with the maximum z value.