Cobwebbing Sequences Adapted from homework created by Jonny Comes.

1. Let $f(x) = \frac{x^2}{2}$. Carefully sketch the graph of f below.

Suppose $a_n = f(a_{n-1})$ for all integers n > 0. Use cobwebbing techniques to investigate the sequence $\{a_n\}_{n=1}^{\infty}$.

- (a) For which values of a_1 is the sequence $\{a_n\}$ converging?
- (b) For each value of a_1 that makes the sequence $\{a_n\}$ converge, state the limit.

2. Pictured below are the graphs of $y = \sin(x) + x$ and y = x.

Suppose $a_n = \sin(a_{n-1}) + a_{n-1}$ for all integers n > 0.

- (a) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 0?
- (b) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to π ?
- (c) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 2π ?
- (d) For which values of a_1 does the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 3π ?

- 3. Suppose r is a real number and $a_n = ra_{n-1}$ for all integers n > 0.
 - (a) Explain what happens to the sequence $\{a_n\}_{n=1}^{\infty}$ when r = 1 or r = 0.
 - (b) Assume r > 1. What functions should you plot to make use of cobwebbing? Use cobwebbing to find all values of a_1 for which the sequence $\{a_n\}$ converges.

(c) Repeat part b for 0 < r < 1.

(d) Repeat part b for r = -1.

(e) Repeat part b for -1 < r < 0.