TMath 126

Practice

Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.

Let \overrightarrow{u} , \overrightarrow{v} , and \overrightarrow{w} be vectors in \mathbb{R}^3 . Recall that \cdot refers to the dot product, and \times refers to the cross product.

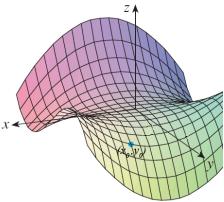
(a) If $\overrightarrow{u} \cdot \overrightarrow{v} = 0$, then $\overrightarrow{u} = \overrightarrow{0}$ or $\overrightarrow{v} = \overrightarrow{0}$.

(b)
$$(\overrightarrow{u} \times \overrightarrow{w}) \cdot \overrightarrow{w} = 0$$

Exam 1

(c)
$$\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{u}||||\overrightarrow{v}||} = \frac{\overrightarrow{u}}{||\overrightarrow{u}||} \cdot \frac{\overrightarrow{v}}{||\overrightarrow{v}||}.$$

- (d) The line (2+3t, -4t, 5+t) where $t \in \mathbb{R}$ intersects the point (-4, 8, 3).
- (e) Consider the function g pictured to the right. $g_x(x_0, y_0) > 0.$



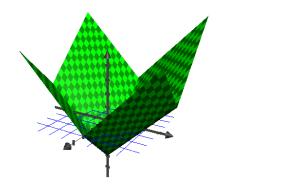
Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

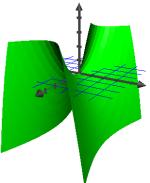
- 2. Consider the points: P(1,3,2), Q(3,-1,6), and R(5,2,0). Also let S(3,6,1.5) and T(-9,-14,-12.5).
 - (a) Plot the points P, Q, and R.
 - (b) Find the components of the vector \overrightarrow{PR} .
 - (c) Find the length of \overrightarrow{PR} .
 - (d) Draw the vector $\overrightarrow{PR} 2\overrightarrow{j}$ and then write its components.
 - (e) Use calculus methods to determine if $\triangle PQR$ is a right triangle or not.

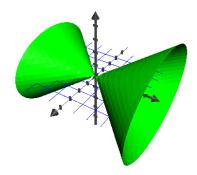
(f) Find the equation of the plane that passes through P, R, and Q.

(g) Does the line that passes through S and T intersect the plane you found in part (a)? Justify yourself.

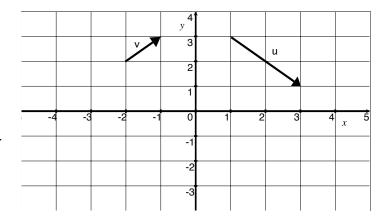
- 3. [3] Consider the equation $2z = \frac{x^2}{2} 2y^2$.
 - (a) Does the above equation describe a function of x and y? Why or why not?
 - (b) Describe the contour curves of the graph of the equation above. That is, describe the intersection of the graph of the above equation with the planes z = k where k is some constant.
 - (c) Describe the intersection of the graph of $2z = \frac{x^2}{2} 2y^2$ with planes parallel to the xz axis. That is, when y = k for some constant k.
 - (d) Which (if any) of the following is a graph of the above function?







- 4. Consider the vector \overrightarrow{v} and \overrightarrow{u} shown to the right.
 - (a) Draw the vector $-3\overrightarrow{v}$.
 - (b) Draw the vector $2\overrightarrow{v} \overrightarrow{u}$.
 - (c) Find the projection of \overrightarrow{u} onto \overrightarrow{v} .



- 5. We define $\overrightarrow{r}(t)$ by: $x(t) = 1 + t^4$, $y(t) = te^{-t}$, and $z(t) = \sin(2t)$.
 - (a) Find the line tangent to the curve $\overrightarrow{r}(t)$ when t = 0.

(b) Find the length of the arc traced by $\overrightarrow{r}(t)$ from t = 0 to t = 5.

6. In a study of frost penetration it was found that the temperature T at time t (measured in days) at a depth x (measured in feet) can be modeled by the function

$$T(x,t) = T_0 + T_1 e^{-\lambda x} \sin(\omega t - \lambda x)$$

where $\omega = 2\pi/360$ and λ is a positive constant.

- (a) Find $\frac{\partial T}{\partial x}$. What is its physical significance?
- (b) Find $\frac{\partial T}{\partial t}$. What is its physical significance?