Exam 1

1. [12] TRUE/FALSE: Write True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, write False and provide a counterexample or brief justification.
(a) (Suggested $\S 14.3 \# 6$) A contour map is given for a function f below. This map implies $f_{x}(2,1) \approx-2$.

(b) (dotActivity\#1) If \vec{w} and \vec{v} are vectors in 3D, then $(\vec{w} \cdot \vec{j})+\vec{v}$ returns a vector.
(c) (WebHW14.2\#2) The limit $\lim _{(x, y) \rightarrow\left(\frac{3 \pi}{2}, \pi\right)} y \sin (x-y)=\pi$
(d) $(\S 13.2 \# 26)$ If $\vec{r}(t)=\left\langle 2^{t}, \ln (t+1), t\right\rangle$, then the line tangent to $\vec{r}(0)$ is:

$$
\langle 1,0,0\rangle+\left\langle 2^{t} \ln (2), \frac{1}{1+t}, 1\right\rangle
$$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. Consider the points $P(0,0,3)$ and $Q(-2,3,0)$
(a) [1] (PracticeExam1\#2) Find the components of $\overrightarrow{P Q}$.
(b) [2] (DotActivity\#2)

Find a vector parallel to $\overrightarrow{P Q}$.

(c) $[3]$ (Quiz2\#1) Find the angle $\overrightarrow{P Q}$ makes with $\langle 0,1,3\rangle$.
(d) [3] (WebHW12.5 \#4) Find an equation of a plane passing through $(2,1,0)$ and normal/orthogonal/perpendicular to $\overrightarrow{P Q}$
3. [3] (§14.1\#64) Two perspectives of the graph of $f(x, y)$ are shown below. Identify which algebraic rule below corresponds with it. Provide justification!!!

- $f(x, y)=\sin (x)-\sin (y)$
- $f(x, y)=\sin (x y)$
- $f(x, y)=\sin (x-y)$

4. Consider the bicycle pedal shown on the right. A horizontal force of 20 lbs is applied to the handle as shown.
(a) [2] (3DActivity \#1) Identify a 3D axis on the picture indicating the positive x, y, and z axis.
(b) [3] (WrittenHW12.4\#40) Write the components of the force vector with respect to your 3D axis.

(c) [3] (Quiz2\#2) Find the vector of the torque created about the pivot point P.
5. Consider the parametric curve $x=f(t), y=g(t)$ where $-1 \leq t \leq 1$, graphed below for the following questions.
(a) [3] Looking at the graph, approximate where $\frac{d y}{d x}$ is not defined. (Report either a point on the graph or an approximate t value.)

(b) [6] (WrittenHW§10.1\#32) Sketch the equations $x=f(t)$ and $y=g(t)$ on the pair of axis below.

(c) [4] (WebHW10.2\#3) Given the following information, find the (approximate) line tangent to the curve $x=f(t), y=g(t)$ when $t=\frac{1}{2}$. Use whatever form of a line you like (eg. parametric, slope-intercept, standard, etc)
$f\left(\frac{1}{2}\right) \approx 0$
$g\left(\frac{1}{2}\right) \approx .45$
$f^{\prime}\left(\frac{1}{2}\right) \approx 1$
$g^{\prime}\left(\frac{1}{2}\right) \approx-2.68$
