Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let a, b, and c be constants. Assume f and g are continuous.

T $\quad \mathrm{F} \quad \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
T $\quad \mathrm{F} \quad \int f(x) g(x) d x=\int f(x) d x \int g(x) d x$
T F All continuous functions have derivatives.

T F All continuous functions have antiderivatives.
T F $\quad \int_{-1}^{1} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{-1} ^{1}=\frac{-1}{1}-\frac{-1}{-1}=-2$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. Let a be a constant (like 2.5 or something). Find the equation of the line that is tangent to the graph of $y=\ln x$ at $x=e^{a}$ for some constant a.
$f(x)= \begin{cases}2 \sin \left(\frac{\pi}{2} x\right) & \text { if } x<-2 \\ -\sqrt{4-x^{2}} ; & \text { if }-2 \leq x \leq 2 \\ x-2 ; & \text { if } 2<x\end{cases}$
3. Refer to the above definition of $f(x)$ to answer the following questions.
(a) Carefully graph $f(x)$ from $x=-6$ to $x=4$.
(b) Use your above graph to find $\int_{-2}^{4} f(x) d x$.
(c) Give a rough sketch the graph of $\int_{0}^{x} f(t) d t$ from $x=-6$ to $x=4$.
4. For this page you will use the function f graphed below and the function g. It is given that $\int_{-4}^{-2} g(x) d x=3$ and $\int_{-2}^{0} g(x) d x=2$

(a) Find $\int_{1}^{1} f(x) d x$
(b) Describe the shaded area as a definite integral.
(c) Find $\int_{-4}^{0} f(x) d x$
(d) Find $\int_{-4}^{0} f(x)+g(x) d x$
5. Find

$$
\frac{d}{d x} \int_{0}^{\tan x} \sqrt{1+r^{3}} d r
$$

$$
\left(\int_{x}^{0} e^{\arctan (t)} d t\right)^{\prime}
$$

6. Evaluate the following.

$$
\int \frac{t^{3}-3 t^{2}}{2 t} d t
$$

$$
\int_{4}^{7} x^{3} \sqrt{x^{2}+1} d x
$$

7. Dr. Card and Dr. Eaton decide to have a short race. The following is a graph of their respective velocities at time t measured in seconds.

(a) Estimate the total distance each one runs during the race.
(b) If the race is 20 ft , who wins the race? Explain how you know.
8. Consider $y=\sin (2 x)$ and $y=\cos (x)$. Find the area of the region bounded by the above between $x=0$ and $x=\pi$.
9. Find the area bounded by $y=\ln x, y=1, y=2, x=0$.
10. Expand $\sum_{j=2}^{6}\left(\frac{j}{j^{2}-3}\right)$. (You do not need to compute this!)
11. The figure shows graphs of the marginal revenue function R^{\prime} and the marginal cost function C^{\prime}. for a manufacturer. Let $R(x)$ and $C(x)$ represent the revenue and cost when x units are manufactured respectively. Assume that R and C are measured in thousands of dollars.
(a) What is the meaning of the area of the shaded region?
(b) Use two left-hand approximating rectangles to estimate the shaded region.

(c) Classify if your approximation is an over or underestimate.
