Exam 1

Show all your work.

Reasonable supporting work must be shown to earn credit.

1. [3] (SummationActivity #1) Expand  $\sum_{i=2}^{6} \left( \frac{(-1)^{i}}{i-3} \right)$ . (You do *not* need to compute or simplify this!)

- 2. Find the following.
  - (a) [2] (Week2Monday)  $\int \sin(t) dt$

(b) [4] (WebHW5-4&5-3 #7) 
$$\int_{1}^{4} \frac{3 + \sqrt{x} + x}{x} dx$$

(c) [4] (WrittenHW5-5 #90) 
$$\int \frac{2e^{0.4x}}{(1+5e^{0.4x})^2} dx$$

3. Let f(t) be the piece-wise defined function graphed below that is comprised of straight lines. The graph of f reports the velocity (m/s) of an electric vehicle moving on a straight track after t seconds. At t = 0, the vehicle is at the charging station.



- (c) [2] (WrittenHW5-3#4) Find g(3), exactly.
- (d) [2] (WebHW5-4&5-3#9) Interpret g(3) in terms of distance or velocity of the electric vehicle.
- (e) [2] (WrittenHW5-3#4) Estimate g'(3).
- (f) [3] (WrittenHW5-4 #68, WrittenHW5-3#12) At what time is the vehicle farthest from the charging station? Justify your answer.

4. (SuggestedHW6-1#3) Consider the area trapped by  $f(y) = y^2 - 2$ ,  $g(y) = e^y$ , y = -1, and y = 1.

| (a) [3] Sketch and shade the region bounded by the curves.                                                             |    |    |    |    | y <sub>4</sub><br>3 |   |   |   |   |            |
|------------------------------------------------------------------------------------------------------------------------|----|----|----|----|---------------------|---|---|---|---|------------|
|                                                                                                                        |    |    |    |    | 2                   |   |   |   |   |            |
| (b) [4] Set up the definite integral<br>(but do not compute!)that<br>will find the area of the<br>shaded region above. |    |    |    |    | 1                   |   |   |   |   |            |
|                                                                                                                        | -4 | -3 | -2 | -1 | 0                   | 1 | 2 | 3 | 4 | <b>1</b> 5 |
|                                                                                                                        |    |    |    |    | -1                  |   |   |   |   | ~          |
|                                                                                                                        |    |    |    |    | -2                  |   |   |   |   |            |
|                                                                                                                        |    |    |    |    | -3                  |   |   |   |   |            |
|                                                                                                                        |    |    |    |    | -4                  |   |   |   |   |            |

5. Let g(t) be a continuous function such that  $\int_{-3}^{1} g(t) dt = 3$  and  $\int_{1}^{4} g(t) dt = -1$ . Find the following:

(a) [2] (DefiniteIntegralActivity#3)  $\int_{-3}^{4} 5g(t) dt$ 

(b) [3] (Quiz1#2) 
$$\int_{-3}^{1} g(t) + 1 dt$$

6. Each of the following is wrong. Explain why.

(a) [2] (Written 5-3#66) 
$$\int_0^{\pi} \sec^2(x) \, dx = \tan(x)|_0^{\pi} = 0$$

(b) 
$$[2] \int_{1}^{2} \frac{4}{x^{3}} dx = \int_{1}^{2} 4x^{-3} dx = 4(-3)x^{-4}|_{1}^{2} = -12 \cdot 2^{-4} - (-12 \cdot (1)^{-4}) = -192 + 12 = 180$$

7. The graph below shows the marginal revenue function R'(x) and the marginal cost function C'(x) for a manufacturer. Assume that R and C are measured in thousands of dollars.



- (c) [3] (WrittenHW5-1 #14) Approximate the area of the shaded region. Make sure it is clear what your approximation technique is!
- 8. [2] What concept did you study but not see on the exam?