Show all your work.
Reasonable supporting work must be shown to earn credit.

1. [3] (SummationActivity \#1) Expand $\sum_{i=2}^{6}\left(\frac{(-1)^{i}}{i-3}\right)$.
(You do not need to compute or simplify this!)
2. Find the following.
(a) [2] (Week2Monday) $\int \sin (t) d t$
(b) [4] (WebHW5-4\&5-3 \#7) $\int_{1}^{4} \frac{3+\sqrt{x}+x}{x} d x$
(c) $[4]($ WrittenHW $5-5 \# 90) \int \frac{2 e^{0.4 x}}{\left(1+5 e^{0.4 x}\right)^{2}} d x$
3. Let $f(t)$ be the piece-wise defined function graphed below that is comprised of straight lines. The graph of f reports the velocity $(\mathrm{m} / \mathrm{s})$ of an electric vehicle moving on a straight track after t seconds. At $t=0$, the vehicle is at the charging station.
Let $g(x)=\int_{0}^{x} f(t) d t$
(a) [1] (Quiz1\#1a)

Estimate $f(3)$.
(b) [1] (WebHW5-3\#7) Estimate $f^{\prime}(3)$.

(c) [2] (WrittenHW5-3\#4) Find $g(3)$, exactly.
(d) [2] (WebHW5-4\&5-3\#9) Interpret $g(3)$ in terms of distance or velocity of the electric vehicle.
(e) [2] (WrittenHW5-3\#4) Estimate $g^{\prime}(3)$.
(f) [3] (WrittenHW5-4 \#68, WrittenHW5-3\#12) At what time is the vehicle farthest from the charging station? Justify your answer.
4. (SuggestedHW6-1\#3) Consider the area trapped by $f(y)=y^{2}-2, g(y)=e^{y}, y=-1$, and $y=1$.
(a) [3] Sketch and shade the region bounded by the curves.

5. Let $g(t)$ be a continuous function such that $\int_{-3}^{1} g(t) d t=3$ and $\int_{1}^{4} g(t) d t=-1$. Find the following:
(a) [2] (DefiniteIntegralActivity\#3) $\int_{-3}^{4} 5 g(t) d t$
(b) [3] (Quiz1\#2) $\int_{-3}^{1} g(t)+1 d t$
6. Each of the following is wrong. Explain why.
(a) [2] (Written5-3\#66) $\int_{0}^{\pi} \sec ^{2}(x) d x=\left.\tan (x)\right|_{0} ^{\pi}=0$
(b) $[2] \int_{1}^{2} \frac{4}{x^{3}} d x=\int_{1}^{2} 4 x^{-3} d x=\left.4(-3) x^{-4}\right|_{1} ^{2}=-12 \cdot 2^{-4}-\left(-12 \cdot(1)^{-4}\right)=-192+12=180$
7. The graph below shows the marginal revenue function $R^{\prime}(x)$ and the marginal cost function $C^{\prime}(x)$ for a manufacturer. Assume that R and C are measured in thousands of dollars.
(a) [2] (Quiz1\#1) Shade the region described by $\int_{0}^{50} C^{\prime}(x) d x$.
(b) [3] (PracticeExam\#11) What is the meaning of the area of the shaded region?

(c) [3] (WrittenHW5-1 \#14) Approximate the area of the shaded region. Make sure it is clear what your approximation technique is!
8. [2] What concept did you study but not see on the exam?

